With downscaling of electronic circuits, components based on semiconductor quantum dots are assuming increasing relevance for future technologies. Their response under external stimuli intrinsically depend on their quantum properties. Here we investigate single-electron tunneling in hard-wall InAs/InP nanowires in the presence of an off-resonant microwave drive. Our heterostructured nanowires include InAs quantum dots (QDs) and exhibit different tunnel-current regimes. In particular, for source-drain bias up to few mV Coulomb diamonds spread with increasing contrast as a function of microwave power and present multiple current polarity reversals. This behavior can be modelled in terms of voltage fluctuations induced by the microwave field and presents features that depend on the interplay of the discrete energy levels that contribute to the tunneling process.
Microwave-Assisted Tunneling in Hard-Wall InAs/InP Nanowire Quantum Dots / Cornia, S.; Rossella, F.; Demontis, V.; Zannier, V.; Beltram, F.; Sorba, L.; Affronte, M.; Ghirri, A.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), pp. 19523-19530. [10.1038/s41598-019-56053-2]
Microwave-Assisted Tunneling in Hard-Wall InAs/InP Nanowire Quantum Dots
Cornia S.;Rossella F.;Affronte M.;
2019
Abstract
With downscaling of electronic circuits, components based on semiconductor quantum dots are assuming increasing relevance for future technologies. Their response under external stimuli intrinsically depend on their quantum properties. Here we investigate single-electron tunneling in hard-wall InAs/InP nanowires in the presence of an off-resonant microwave drive. Our heterostructured nanowires include InAs quantum dots (QDs) and exhibit different tunnel-current regimes. In particular, for source-drain bias up to few mV Coulomb diamonds spread with increasing contrast as a function of microwave power and present multiple current polarity reversals. This behavior can be modelled in terms of voltage fluctuations induced by the microwave field and presents features that depend on the interplay of the discrete energy levels that contribute to the tunneling process.File | Dimensione | Formato | |
---|---|---|---|
inAs:inp nanowire Quantum Dots.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris