Abstract: The conductive polymer-based applications combine low cost, simple manufacturing procedure, flexibility and other properties. However, the low viscosity and solubility of these polymers make it difficult to produce layers by using industrial techniques. Among the most commonly used conjugated conductive organic polymers we can mention polyacetylene, polythiophene, polypyrrole, polyaniline, etc. In order to test them in further applications, new copolymers of thiophene and p-methoxybenzaldehyde were synthesized. The copolymers obtained will be characterized by several techniques (NMR, UV, CV, ATG, and electrical characterization). The study of the optical properties after doping is performed according to oxidation-reduction reactions by FeCl3, I2, in order to apprehend the redox behavior of this copolymer. The calculated value of energy gap Egcv of the studied polymers shows a decrease with the oxidation agent doping according to their oxidation potential, from 2.48 eV for the no doped copolymer passing by 2.22 eV for the copolymer doped with I2 and up to 1.5 eV for the copolymer doped with FeCl3. The decrease of the energy gap with the doping (FeCl3 and I2) corresponds to the increase of the conductivity with doping from 2.85 × 10–5 S m–1 for no doped polymer to 7.86 × 10–5 S m–1 for copolymer doped with I2 and 1.55 × 10–4 S m–1 for copolymer doped with FeCl3.
Synthesis and Characterization of Semiconductor Polymer Doped with FeCl3 and I2 / Bouabdallah, Daho; Fontanesi, C.; Messori, M.; Dehbi, A.; Belfedal, A.. - In: SEMICONDUCTORS. - ISSN 1063-7826. - 53:12(2019), pp. 1656-1664. [10.1134/S1063782619160073]
Synthesis and Characterization of Semiconductor Polymer Doped with FeCl3 and I2
Fontanesi C.;Messori M.;
2019
Abstract
Abstract: The conductive polymer-based applications combine low cost, simple manufacturing procedure, flexibility and other properties. However, the low viscosity and solubility of these polymers make it difficult to produce layers by using industrial techniques. Among the most commonly used conjugated conductive organic polymers we can mention polyacetylene, polythiophene, polypyrrole, polyaniline, etc. In order to test them in further applications, new copolymers of thiophene and p-methoxybenzaldehyde were synthesized. The copolymers obtained will be characterized by several techniques (NMR, UV, CV, ATG, and electrical characterization). The study of the optical properties after doping is performed according to oxidation-reduction reactions by FeCl3, I2, in order to apprehend the redox behavior of this copolymer. The calculated value of energy gap Egcv of the studied polymers shows a decrease with the oxidation agent doping according to their oxidation potential, from 2.48 eV for the no doped copolymer passing by 2.22 eV for the copolymer doped with I2 and up to 1.5 eV for the copolymer doped with FeCl3. The decrease of the energy gap with the doping (FeCl3 and I2) corresponds to the increase of the conductivity with doping from 2.85 × 10–5 S m–1 for no doped polymer to 7.86 × 10–5 S m–1 for copolymer doped with I2 and 1.55 × 10–4 S m–1 for copolymer doped with FeCl3.File | Dimensione | Formato | |
---|---|---|---|
Semiconductors2019-Pleiades.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
922.28 kB
Formato
Adobe PDF
|
922.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris