We predict the enhanced light harvesting of a protein-pigment complex when assembled to a quantum dot (QD) antenna. Our prototypical nanoassembly setup is composed of a Fenna-Mattews-Olson system hosting 8 Bacteriochlorophyll (BChl) a dyes, and a near-infrared emitting CdSexTe(1-x)/ZnS alloy-core/shell nanocrystal. BChl a has two wide windows of poor absorption in the green and orange-red bands, precisely where most of the sunlight energy lies. The selected QD is able to collect sunlight efficiently in a broader band and funnel its energy by a (non-radiative) Forster resonance energy transfer mechanism to the dyes embedded in the protein. By virtue of the coupling between the QD and the dyes, the nanoassembly absorption is dramatically improved in the poor absorption window of the BChl a.
Enhanced light-harvesting of protein-pigment complexes assisted by a quantum dot antenna / Gil, G; Goldoni, G; Corni, S. - (2018). (Intervento presentato al convegno Nanotechnology for Instrumentation and Measurement tenutosi a Mexico City nel November 7-8, 2018) [10.1109/NANOFIM.2018.8688607].
Enhanced light-harvesting of protein-pigment complexes assisted by a quantum dot antenna
Gil, G;Goldoni, GMembro del Collaboration Group
;Corni, S
2018
Abstract
We predict the enhanced light harvesting of a protein-pigment complex when assembled to a quantum dot (QD) antenna. Our prototypical nanoassembly setup is composed of a Fenna-Mattews-Olson system hosting 8 Bacteriochlorophyll (BChl) a dyes, and a near-infrared emitting CdSexTe(1-x)/ZnS alloy-core/shell nanocrystal. BChl a has two wide windows of poor absorption in the green and orange-red bands, precisely where most of the sunlight energy lies. The selected QD is able to collect sunlight efficiently in a broader band and funnel its energy by a (non-radiative) Forster resonance energy transfer mechanism to the dyes embedded in the protein. By virtue of the coupling between the QD and the dyes, the nanoassembly absorption is dramatically improved in the poor absorption window of the BChl a.File | Dimensione | Formato | |
---|---|---|---|
IEEE_NANOfIM_2018.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
332.82 kB
Formato
Adobe PDF
|
332.82 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris