Fog computing is becoming popular as a solution to support applications based on geographically distributed sensors that produce huge volumes of data to be processed and filtered with response time constraints. In this scenario, typical of a smart city environment, the traditional cloud paradigm with few powerful data centers located far away from the sources of data becomes inadequate. The fog computing paradigm, which provides a distributed infrastructure of nodes placed close to the data sources, represents a better solution to perform filtering, aggregation, and preprocessing of incoming data streams reducing the experienced latency and increasing the overall scalability. However, many issues still exist regarding the efficient management of a fog computing architecture, such as the distribution of data streams coming from sensors over the fog nodes to minimize the experienced latency. The contribution of this paper is two-fold. First, we present an optimization model for the problem of mapping data streams over fog nodes, considering not only the current load of the fog nodes, but also the communication latency between sensors and fog nodes. Second, to address the complexity of the problem, we present a scalable heuristic based on genetic algorithms. We carried out a set of experiments based on a realistic smart city scenario: the results show how the performance of the proposed heuristic is comparable with the one achieved through the solution of the optimization problem. Then, we carried out a comparison among different genetic evolution strategies and operators that identify the uniform crossover as the best option. Finally, we perform a wide sensitivity analysis to show the stability of the heuristic performance with respect to its main parameters.

GASP: Genetic algorithms for service placement in fog computing systems / Canali, C.; Lancellotti, R.. - In: ALGORITHMS. - ISSN 1999-4893. - 12:10(2019), pp. 201-2021. [10.3390/a12100201]

GASP: Genetic algorithms for service placement in fog computing systems

Canali C.;Lancellotti R.
2019

Abstract

Fog computing is becoming popular as a solution to support applications based on geographically distributed sensors that produce huge volumes of data to be processed and filtered with response time constraints. In this scenario, typical of a smart city environment, the traditional cloud paradigm with few powerful data centers located far away from the sources of data becomes inadequate. The fog computing paradigm, which provides a distributed infrastructure of nodes placed close to the data sources, represents a better solution to perform filtering, aggregation, and preprocessing of incoming data streams reducing the experienced latency and increasing the overall scalability. However, many issues still exist regarding the efficient management of a fog computing architecture, such as the distribution of data streams coming from sensors over the fog nodes to minimize the experienced latency. The contribution of this paper is two-fold. First, we present an optimization model for the problem of mapping data streams over fog nodes, considering not only the current load of the fog nodes, but also the communication latency between sensors and fog nodes. Second, to address the complexity of the problem, we present a scalable heuristic based on genetic algorithms. We carried out a set of experiments based on a realistic smart city scenario: the results show how the performance of the proposed heuristic is comparable with the one achieved through the solution of the optimization problem. Then, we carried out a comparison among different genetic evolution strategies and operators that identify the uniform crossover as the best option. Finally, we perform a wide sensitivity analysis to show the stability of the heuristic performance with respect to its main parameters.
2019
12
10
201
2021
GASP: Genetic algorithms for service placement in fog computing systems / Canali, C.; Lancellotti, R.. - In: ALGORITHMS. - ISSN 1999-4893. - 12:10(2019), pp. 201-2021. [10.3390/a12100201]
Canali, C.; Lancellotti, R.
File in questo prodotto:
File Dimensione Formato  
algorithms-12-00201 (1).pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 447.84 kB
Formato Adobe PDF
447.84 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1185774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 42
social impact