Our aim in this paper is to study a mathematical model for the proliferative-toinvasive transition of hypoxic glioma cells. We prove the existence and uniqueness of nonnegative solutions and then address the important question of whether the positive solutions undergo extinction or permanence. More precisely, we prove that this depends on the boundary conditions: there is no extinction when considering Neumann boundary conditions, while we prove extinction when considering Dirichlet boundary conditions.
Mathematical analysis of a model for proliferative-to-invasive transition of hypoxic glioma cells / Conti, Monica; Gatti, Stefania; Miranville, Alain. - In: NONLINEAR ANALYSIS. - ISSN 1751-570X. - 189:(2019), pp. 1-17. [10.1016/j.na.2019.111572]
Mathematical analysis of a model for proliferative-to-invasive transition of hypoxic glioma cells
Stefania Gatti
;
2019
Abstract
Our aim in this paper is to study a mathematical model for the proliferative-toinvasive transition of hypoxic glioma cells. We prove the existence and uniqueness of nonnegative solutions and then address the important question of whether the positive solutions undergo extinction or permanence. More precisely, we prove that this depends on the boundary conditions: there is no extinction when considering Neumann boundary conditions, while we prove extinction when considering Dirichlet boundary conditions.File | Dimensione | Formato | |
---|---|---|---|
NA2019.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
721.32 kB
Formato
Adobe PDF
|
721.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris