Evaporative cooling represents a key subject for both academia and industry: the behavior of sessile droplets has been studied in detail over many decades and a large body of literature is currently available on heat-transfer mechanisms. The present work is focused on the thermal transient occurring as one or two water droplets are gently released (We < 30) onto a heated solid surface; moreover, the single-phase-evaporation regime is here considered. Infrared thermography has been employed to perform experimental measurements of the temperature trend at the solid-liquid interface: a suitable facility has been built to carry out measurements from below, thus introducing a fully non-intrusive approach. As the numerical task of this study, a computational code has been developed to predict the entire evaporation mechanism together with the thermal transient of the solid substrate: the three-dimensional energy-diffusion equation has been discretized through the finite-volume method and the simulations have been based on a structured non-uniform mesh. The proposed modeling has been made capable of reproducing both the single- and the multi-droplet configuration. A remarkably good agreement is shown between experimental and numerical outcomes in terms of temperature, thus resulting in a realistic simulation of droplet interaction over both the spatial domain and the time coordinate (evaporation and recovery).

Evaporative cooling of heated solid surfaces: Two-droplet thermal interaction / Santangelo, Paolo Emilio; Corticelli, Mauro Alessandro; Tartarini, Paolo. - (2010), pp. 35-42. (Intervento presentato al convegno DIPSI Workshop “Droplet Impact Phenomena & Spray Investigations” tenutosi a Bergamo, Italia nel 28 maggio 2010).

Evaporative cooling of heated solid surfaces: Two-droplet thermal interaction

Paolo Emilio Santangelo;Mauro Alessandro Corticelli;Paolo Tartarini
2010

Abstract

Evaporative cooling represents a key subject for both academia and industry: the behavior of sessile droplets has been studied in detail over many decades and a large body of literature is currently available on heat-transfer mechanisms. The present work is focused on the thermal transient occurring as one or two water droplets are gently released (We < 30) onto a heated solid surface; moreover, the single-phase-evaporation regime is here considered. Infrared thermography has been employed to perform experimental measurements of the temperature trend at the solid-liquid interface: a suitable facility has been built to carry out measurements from below, thus introducing a fully non-intrusive approach. As the numerical task of this study, a computational code has been developed to predict the entire evaporation mechanism together with the thermal transient of the solid substrate: the three-dimensional energy-diffusion equation has been discretized through the finite-volume method and the simulations have been based on a structured non-uniform mesh. The proposed modeling has been made capable of reproducing both the single- and the multi-droplet configuration. A remarkably good agreement is shown between experimental and numerical outcomes in terms of temperature, thus resulting in a realistic simulation of droplet interaction over both the spatial domain and the time coordinate (evaporation and recovery).
2010
DIPSI Workshop “Droplet Impact Phenomena & Spray Investigations”
Bergamo, Italia
28 maggio 2010
35
42
Santangelo, Paolo Emilio; Corticelli, Mauro Alessandro; Tartarini, Paolo
Evaporative cooling of heated solid surfaces: Two-droplet thermal interaction / Santangelo, Paolo Emilio; Corticelli, Mauro Alessandro; Tartarini, Paolo. - (2010), pp. 35-42. (Intervento presentato al convegno DIPSI Workshop “Droplet Impact Phenomena & Spray Investigations” tenutosi a Bergamo, Italia nel 28 maggio 2010).
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1184941
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact