Current monitoring solutions are not well suited to monitoring large data centers in different ways: lack of scalability, scarce representativity of global state conditions, inability in guaranteeing persistence in service delivery, and the impossibility of monitoring multitenant applications. In this paper, we present a novel monitoring architecture that strives to address these problems. It integrates a hierarchical scheme to monitor the resources in a cluster with a distributed hash table (DHT) to broadcast system state information among different monitors. This architecture strives to obtain high scalability, effectiveness and resilience, as well as the possibility of monitoring services spanning across different clusters or even different data centers of the cloud provider. We evaluate the scalability of the proposed architecture through an experimental analysis and we measure the overhead of the DHT-based communication scheme.
A scalable monitor for large systems / Andreolini, M.; Pietri, M.; Tosi, S.; Lancellotti, R.. - 512:(2015), pp. 100-116. (Intervento presentato al convegno International Conference in Cloud Computing and Services Sciences, CLOSER 2014 tenutosi a esp nel 2014) [10.1007/978-3-319-25414-2_7].
A scalable monitor for large systems
Andreolini M.;Pietri M.;Tosi S.;Lancellotti R.
2015
Abstract
Current monitoring solutions are not well suited to monitoring large data centers in different ways: lack of scalability, scarce representativity of global state conditions, inability in guaranteeing persistence in service delivery, and the impossibility of monitoring multitenant applications. In this paper, we present a novel monitoring architecture that strives to address these problems. It integrates a hierarchical scheme to monitor the resources in a cluster with a distributed hash table (DHT) to broadcast system state information among different monitors. This architecture strives to obtain high scalability, effectiveness and resilience, as well as the possibility of monitoring services spanning across different clusters or even different data centers of the cloud provider. We evaluate the scalability of the proposed architecture through an experimental analysis and we measure the overhead of the DHT-based communication scheme.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris