Near Infrared (NIR) spectroscopy is an analytical technology widely used for the non-destructive characterisation of organic samples, considering both qualitative and quantitative attributes. In the present study, the combination of Multi-target (MT) prediction approaches and Machine Learning algorithms has been evaluated as an effective strategy to improve prediction performances of NIR data from wheat flour samples. Three different Multi-target approaches have been tested: Multi-target Regressor Stacking (MTRS), Ensemble of Regressor Chains (ERC) and Deep Structure for Tracking Asynchronous Regressor Stack (DSTARS). Each one of these techniques has been tested with different regression methods: Support Vector Machine (SVM), Random Forest (RF) and Linear Regression (LR), on a dataset composed of NIR spectra of bread wheat flours for the prediction of quality-related parameters. By combining all MT techniques and predictors, we obtained an improvement up to 7% in predictive performance, compared with the corresponding Single-target (ST) approaches. The results support the potential advantage of MT techniques over ST techniques for analysing NIR spectra.

Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy / Barbon Junior, S.; Mastelini, S. M.; Barbon, A. P. A. C.; Barbin, D. F.; Calvini, R.; Lopes, J. F.; Ulrici, A.. - In: INFORMATION PROCESSING IN AGRICULTURE. - ISSN 2214-3173. - (2020), pp. 1-13. [10.1016/j.inpa.2019.07.001]

Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy

Calvini R.;Ulrici A.
2020

Abstract

Near Infrared (NIR) spectroscopy is an analytical technology widely used for the non-destructive characterisation of organic samples, considering both qualitative and quantitative attributes. In the present study, the combination of Multi-target (MT) prediction approaches and Machine Learning algorithms has been evaluated as an effective strategy to improve prediction performances of NIR data from wheat flour samples. Three different Multi-target approaches have been tested: Multi-target Regressor Stacking (MTRS), Ensemble of Regressor Chains (ERC) and Deep Structure for Tracking Asynchronous Regressor Stack (DSTARS). Each one of these techniques has been tested with different regression methods: Support Vector Machine (SVM), Random Forest (RF) and Linear Regression (LR), on a dataset composed of NIR spectra of bread wheat flours for the prediction of quality-related parameters. By combining all MT techniques and predictors, we obtained an improvement up to 7% in predictive performance, compared with the corresponding Single-target (ST) approaches. The results support the potential advantage of MT techniques over ST techniques for analysing NIR spectra.
12-lug-2019
1
13
Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy / Barbon Junior, S.; Mastelini, S. M.; Barbon, A. P. A. C.; Barbin, D. F.; Calvini, R.; Lopes, J. F.; Ulrici, A.. - In: INFORMATION PROCESSING IN AGRICULTURE. - ISSN 2214-3173. - (2020), pp. 1-13. [10.1016/j.inpa.2019.07.001]
Barbon Junior, S.; Mastelini, S. M.; Barbon, A. P. A. C.; Barbin, D. F.; Calvini, R.; Lopes, J. F.; Ulrici, A.
File in questo prodotto:
File Dimensione Formato  
IPA-artcicle in press.pdf

accesso aperto

Descrizione: article in press
Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri
barbon2020.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1182369
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact