Near Infrared (NIR) spectroscopy is an analytical technology widely used for the non-destructive characterisation of organic samples, considering both qualitative and quantitative attributes. In the present study, the combination of Multi-target (MT) prediction approaches and Machine Learning algorithms has been evaluated as an effective strategy to improve prediction performances of NIR data from wheat flour samples. Three different Multi-target approaches have been tested: Multi-target Regressor Stacking (MTRS), Ensemble of Regressor Chains (ERC) and Deep Structure for Tracking Asynchronous Regressor Stack (DSTARS). Each one of these techniques has been tested with different regression methods: Support Vector Machine (SVM), Random Forest (RF) and Linear Regression (LR), on a dataset composed of NIR spectra of bread wheat flours for the prediction of quality-related parameters. By combining all MT techniques and predictors, we obtained an improvement up to 7% in predictive performance, compared with the corresponding Single-target (ST) approaches. The results support the potential advantage of MT techniques over ST techniques for analysing NIR spectra.
Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy / Barbon Junior, S.; Mastelini, S. M.; Barbon, A. P. A. C.; Barbin, D. F.; Calvini, R.; Lopes, J. F.; Ulrici, A.. - In: INFORMATION PROCESSING IN AGRICULTURE. - ISSN 2214-3173. - (2020), pp. 1-13.
Data di pubblicazione: | 2020 | |
Data di prima pubblicazione: | 12-lug-2019 | |
Titolo: | Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy | |
Autore/i: | Barbon Junior, S.; Mastelini, S. M.; Barbon, A. P. A. C.; Barbin, D. F.; Calvini, R.; Lopes, J. F.; Ulrici, A. | |
Autore/i UNIMORE: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.inpa.2019.07.001 | |
Rivista: | ||
Pagina iniziale: | 1 | |
Pagina finale: | 13 | |
Codice identificativo Scopus: | 2-s2.0-85069547988 | |
Citazione: | Multi-target prediction of wheat flour quality parameters with near infrared spectroscopy / Barbon Junior, S.; Mastelini, S. M.; Barbon, A. P. A. C.; Barbin, D. F.; Calvini, R.; Lopes, J. F.; Ulrici, A.. - In: INFORMATION PROCESSING IN AGRICULTURE. - ISSN 2214-3173. - (2020), pp. 1-13. | |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
IPA-artcicle in press.pdf | article in press | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |
barbon2020.pdf | Versione dell'editore (versione pubblicata) | Administrator Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris