This paper deals with the equilibrium problem of von Mises trusses in nonlinear elasticity. A general loading condition is considered and the rods are regarded as hyperelastic bodies composed of a homogeneous isotropic material. Under the hypothesis of homogeneous deformations, the finite displacement fields and deformation gradients are derived. Consequently, the Piola-Kirchhoff and Cauchy stress tensors are computed by formulating the boundary-value problem. The equilibrium in the deformed configuration is then written and the stability of the equilibrium paths is assessed through the energy criterion. An application assuming a compressible Mooney-Rivlin material is performed. The equilibrium solutions for the case of vertical load present primary and secondary branches. Although, the stability analysis reveals that the only form of instability is the snap-through phenomenon. Finally, the finite theory is linearized by introducing the hypotheses of small displacement and strain fields. By doing so, the classical solution of the two-bar truss in linear elasticity is recovered.
Equilibrium Paths for von Mises Trusses in Finite Elasticity / Pelliciari, Matteo; Tarantino, Angelo Marcello. - In: JOURNAL OF ELASTICITY. - ISSN 1573-2681. - (2020), pp. 1-24.
Data di pubblicazione: | 2020 |
Data di prima pubblicazione: | 27-mar-2019 |
Titolo: | Equilibrium Paths for von Mises Trusses in Finite Elasticity |
Autore/i: | Pelliciari, Matteo; Tarantino, Angelo Marcello |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10659-019-09731-1 |
Rivista: | |
Pagina iniziale: | 1 |
Pagina finale: | 24 |
Codice identificativo ISI: | WOS:000512957000002 |
Codice identificativo Scopus: | 2-s2.0-85064201300 |
Citazione: | Equilibrium Paths for von Mises Trusses in Finite Elasticity / Pelliciari, Matteo; Tarantino, Angelo Marcello. - In: JOURNAL OF ELASTICITY. - ISSN 1573-2681. - (2020), pp. 1-24. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris