Research question: What is the cumulative effect of two follicle-stimulating hormone receptor (FSHR) mutations in spontaneous ovarian hyperstimulation syndrome (sOHSS) pathogenesis? Are these mutations in the mono- or biallelic state? Design: Two FSHR mutations were found in a pregnant patient affected by sOHSS with no predisposing conditions. While the p.Asn106His mutation is novel, the p.Ser128Tyr mutation has been associated with sOHSS previously. The patient's FSHR gene was analysed by Sanger sequencing, and FSHR cDNAs carrying a single or both point mutations were created by mutagenesis in vitro. cAMP activation by recombinant FSH, luteinizing hormone (LH), human chorionic gonadotropin (HCG) and thyroid-stimulating hormone (TSH) was evaluated in transfected HEK293 cells by bioluminescence resonance energy transfer. Results: All mutations decreased the 50% effective concentration of FSH calculated for cAMP (P < 0.05, n = 6), resulting in two- to 10-fold lower ligand potency. TSH failed to induce an FSHR-mediated increase in intracellular cAMP, while LH was approximately four-fold more potent than HCG in p.Ser128Tyr FSHR-expressing HEK293 cells despite lower cAMP plateau levels (P < 0.05, n = 5). The p.Ser128Tyr FSHR mutation was found to be responsible for an LH-/HCG-induced increase in cAMP when it was in the biallelic heterozygous state with p.Asn106His, but no increase in cAMP was induced in the monoallelic state. Conclusion: In-vitro data support that, in pregnant patients with sOHSS, the two FSHR mutations have an opposing effect on the pathogenesis of sOHSS and are in the biallelic heterozygous form, allowing HCG to induce a p.Ser128Tyr FSHR-mediated increase in cAMP.

Inferring biallelism of two FSH receptor mutations associated with spontaneous ovarian hyperstimulation syndrome by evaluating FSH, LH and HCG cross-activity / Lazzaretti, C.; Riccetti, L.; Sperduti, S.; Anzivino, C.; Brigante, G.; De Pascali, F.; Poti, F.; Rovei, V.; Restagno, G.; Mari, C.; Lussiana, C.; Benedetto, C.; Revelli, A.; Casarini, L.. - In: REPRODUCTIVE BIOMEDICINE ONLINE. - ISSN 1472-6483. - 38:5(2019), pp. 816-824. [10.1016/j.rbmo.2018.12.021]

Inferring biallelism of two FSH receptor mutations associated with spontaneous ovarian hyperstimulation syndrome by evaluating FSH, LH and HCG cross-activity

Lazzaretti C.;Riccetti L.;Sperduti S.;Anzivino C.;Brigante G.;Casarini L.
2019

Abstract

Research question: What is the cumulative effect of two follicle-stimulating hormone receptor (FSHR) mutations in spontaneous ovarian hyperstimulation syndrome (sOHSS) pathogenesis? Are these mutations in the mono- or biallelic state? Design: Two FSHR mutations were found in a pregnant patient affected by sOHSS with no predisposing conditions. While the p.Asn106His mutation is novel, the p.Ser128Tyr mutation has been associated with sOHSS previously. The patient's FSHR gene was analysed by Sanger sequencing, and FSHR cDNAs carrying a single or both point mutations were created by mutagenesis in vitro. cAMP activation by recombinant FSH, luteinizing hormone (LH), human chorionic gonadotropin (HCG) and thyroid-stimulating hormone (TSH) was evaluated in transfected HEK293 cells by bioluminescence resonance energy transfer. Results: All mutations decreased the 50% effective concentration of FSH calculated for cAMP (P < 0.05, n = 6), resulting in two- to 10-fold lower ligand potency. TSH failed to induce an FSHR-mediated increase in intracellular cAMP, while LH was approximately four-fold more potent than HCG in p.Ser128Tyr FSHR-expressing HEK293 cells despite lower cAMP plateau levels (P < 0.05, n = 5). The p.Ser128Tyr FSHR mutation was found to be responsible for an LH-/HCG-induced increase in cAMP when it was in the biallelic heterozygous state with p.Asn106His, but no increase in cAMP was induced in the monoallelic state. Conclusion: In-vitro data support that, in pregnant patients with sOHSS, the two FSHR mutations have an opposing effect on the pathogenesis of sOHSS and are in the biallelic heterozygous form, allowing HCG to induce a p.Ser128Tyr FSHR-mediated increase in cAMP.
2019
23-dic-2018
38
5
816
824
Inferring biallelism of two FSH receptor mutations associated with spontaneous ovarian hyperstimulation syndrome by evaluating FSH, LH and HCG cross-activity / Lazzaretti, C.; Riccetti, L.; Sperduti, S.; Anzivino, C.; Brigante, G.; De Pascali, F.; Poti, F.; Rovei, V.; Restagno, G.; Mari, C.; Lussiana, C.; Benedetto, C.; Revelli, A.; Casarini, L.. - In: REPRODUCTIVE BIOMEDICINE ONLINE. - ISSN 1472-6483. - 38:5(2019), pp. 816-824. [10.1016/j.rbmo.2018.12.021]
Lazzaretti, C.; Riccetti, L.; Sperduti, S.; Anzivino, C.; Brigante, G.; De Pascali, F.; Poti, F.; Rovei, V.; Restagno, G.; Mari, C.; Lussiana, C.; Ben...espandi
File in questo prodotto:
File Dimensione Formato  
2019 Lazzaretti et al - Reproductive BioMedicine Online.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
POSTpRINTj.rbmo.2018.12.021.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.5 MB
Formato Adobe PDF
1.5 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1181064
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact