The last generation of CAD software systems allows the creation of models that consider the whole product lifecycle. Along the product development phase important activities are related to the geometrical tolerances prescription and their control planning. However, the Geometrical and Dimensional Tolerances (GD&T) representation, analysis and verification processes are still rarely taken into account in CAD systems. Such a bottleneck implies a “over the wall” communication between design and quality control departments. On the other hand, the tolerances verification process needs an high level of automation in order to extend the number of inspected products and to shorten the time from control strategy definition to the measurement process. Our research work is focused on the development of an approach for the automatic inspection planning, simulation and optimisation of geometrical tolerances. The approach is based on the integration of three technologies: the augmented CAD models, the 3D optical digitizing systems and the articulated robot systems. In this paper the methodology is presented both for specific geometrical tolerances verification and for the global shape control.
3D Simulation System for GD&T Inspection Process Planning and Optimisation / Germani, M; Mandorli, F; Mengoni, M; Raffaeli, R. - (2007). (Intervento presentato al convegno 10th CIRP International Conference on Computer-Aided Tolerancing:Specification and Verification for tenutosi a Erlangen, Germany nel 21-23 March 2007).
3D Simulation System for GD&T Inspection Process Planning and Optimisation
RAFFAELI R
2007
Abstract
The last generation of CAD software systems allows the creation of models that consider the whole product lifecycle. Along the product development phase important activities are related to the geometrical tolerances prescription and their control planning. However, the Geometrical and Dimensional Tolerances (GD&T) representation, analysis and verification processes are still rarely taken into account in CAD systems. Such a bottleneck implies a “over the wall” communication between design and quality control departments. On the other hand, the tolerances verification process needs an high level of automation in order to extend the number of inspected products and to shorten the time from control strategy definition to the measurement process. Our research work is focused on the development of an approach for the automatic inspection planning, simulation and optimisation of geometrical tolerances. The approach is based on the integration of three technologies: the augmented CAD models, the 3D optical digitizing systems and the articulated robot systems. In this paper the methodology is presented both for specific geometrical tolerances verification and for the global shape control.File | Dimensione | Formato | |
---|---|---|---|
C6-CIRPCAT2007.pdf
Accesso riservato
Dimensione
199.88 kB
Formato
Adobe PDF
|
199.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris