We are interested in the regularity of local minimizers of energy integrals of the Calculus of Variations. Precisely, let Ω be an open subset of Rn. Let f (x, ξ) be a real function defined in Ω × Rnsatisfying the growth condition |fξx(x, ξ)| ≤ h (x) |ξ|p−1, for x ∈ Ω and ξ ∈ Rnwith |ξ| ≥ M0for some M0≥ 0, with h ∈ Lrloc(Ω) for some r > n. This growth condition is more general than those considered in the mathematical literature and allows us to handle some cases recently studied in similar contexts. We associate to f (x, ξ) the so-called natural p−growth conditions on the second derivatives fξξ(x, ξ); i.e., (p − 2) −growth for |fξξ(x, ξ)| from above and (p − 2) −growth from below for the quadratic form (fξξ(x, ξ) λ, λ); for details see either (3) or (7) below. We prove that these conditions are sufficient for the local Lipschitz continuity of any minimizer u ∈ Wloc1,p(Ω) of the energy integral fΩf (x, Du (x)) dx .

Local lipschitz continuity of minimizers with mild assumptions on the x-dependence / Eleuteri, M.; Marcellini, P.; Mascolo, E.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 12:2(2019), pp. 251-265. [10.3934/dcdss.2019018]

Local lipschitz continuity of minimizers with mild assumptions on the x-dependence

Eleuteri M.;
2019

Abstract

We are interested in the regularity of local minimizers of energy integrals of the Calculus of Variations. Precisely, let Ω be an open subset of Rn. Let f (x, ξ) be a real function defined in Ω × Rnsatisfying the growth condition |fξx(x, ξ)| ≤ h (x) |ξ|p−1, for x ∈ Ω and ξ ∈ Rnwith |ξ| ≥ M0for some M0≥ 0, with h ∈ Lrloc(Ω) for some r > n. This growth condition is more general than those considered in the mathematical literature and allows us to handle some cases recently studied in similar contexts. We associate to f (x, ξ) the so-called natural p−growth conditions on the second derivatives fξξ(x, ξ); i.e., (p − 2) −growth for |fξξ(x, ξ)| from above and (p − 2) −growth from below for the quadratic form (fξξ(x, ξ) λ, λ); for details see either (3) or (7) below. We prove that these conditions are sufficient for the local Lipschitz continuity of any minimizer u ∈ Wloc1,p(Ω) of the energy integral fΩf (x, Du (x)) dx .
2019
12
2
251
265
Local lipschitz continuity of minimizers with mild assumptions on the x-dependence / Eleuteri, M.; Marcellini, P.; Mascolo, E.. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - 12:2(2019), pp. 251-265. [10.3934/dcdss.2019018]
Eleuteri, M.; Marcellini, P.; Mascolo, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1179997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact