The primary cause of tumor-related death in breast cancer (BC) is still represented by distant metastasization. The dissemination of tumor cells from the primary tumor to distant sites through bloodstream cannot be early detected by standard imaging methods. The enumeration of circulating tumor cells (CTCs) represents an effective prognostic and predictive biomarker, which is able to monitor efficacy of adjuvant therapies, detect early development of (micro)metastases and at last, assess therapeutic responses of advanced disease earlier than traditional imaging methods. Moreover, since repeated tissue biopsies are invasive, costly and not always feasible, the assessment of tumor characteristics on CTCs, by a peripheral blood sample as a 'liquid biopsy', represents an attractive opportunity. The implementation of molecular and genomic characterization of CTCs could contribute to improve the treatment selection and thus, to move toward more personalized treatments. This review describes the current state of the art on CTC detection strategies, the evidence to demonstrate their clinical validity, and their potential impact for both future clinical trial design and, decision-making process in our daily practice.
CTC enumeration and characterization: Moving toward personalized medicine / Toss, A.; Mu, Z.; Fernandez, S.; Cristofanilli, M.. - In: ANNALS OF TRANSLATIONAL MEDICINE. - ISSN 2305-5839. - 2:11(2014), pp. 108-109. [10.3978/j.issn.2305-5839.2014.09.06]
CTC enumeration and characterization: Moving toward personalized medicine
Toss A.
;
2014
Abstract
The primary cause of tumor-related death in breast cancer (BC) is still represented by distant metastasization. The dissemination of tumor cells from the primary tumor to distant sites through bloodstream cannot be early detected by standard imaging methods. The enumeration of circulating tumor cells (CTCs) represents an effective prognostic and predictive biomarker, which is able to monitor efficacy of adjuvant therapies, detect early development of (micro)metastases and at last, assess therapeutic responses of advanced disease earlier than traditional imaging methods. Moreover, since repeated tissue biopsies are invasive, costly and not always feasible, the assessment of tumor characteristics on CTCs, by a peripheral blood sample as a 'liquid biopsy', represents an attractive opportunity. The implementation of molecular and genomic characterization of CTCs could contribute to improve the treatment selection and thus, to move toward more personalized treatments. This review describes the current state of the art on CTC detection strategies, the evidence to demonstrate their clinical validity, and their potential impact for both future clinical trial design and, decision-making process in our daily practice.File | Dimensione | Formato | |
---|---|---|---|
4861-PB3-R2.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
542.96 kB
Formato
Adobe PDF
|
542.96 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris