In this paper, we introduce a novel GPU-based Connected Components Labeling algorithm: the Block-based Union Find. The proposed strategy significantly improves an existing GPU algorithm, taking advantage of a block-based approach. Experimental results on real cases and synthetically generated datasets demonstrate the superiority of the new proposal with respect to state-of-the-art.

A Block-Based Union-Find Algorithm to Label Connected Components on GPUs / Allegretti, Stefano; Bolelli, Federico; Cancilla, Michele; Grana, Costantino. - 11752:(2019), pp. 271-281. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Trento, Italy nel Sep 9-13) [10.1007/978-3-030-30645-8_25].

A Block-Based Union-Find Algorithm to Label Connected Components on GPUs

Stefano Allegretti;Federico Bolelli;Michele Cancilla;Costantino Grana
2019

Abstract

In this paper, we introduce a novel GPU-based Connected Components Labeling algorithm: the Block-based Union Find. The proposed strategy significantly improves an existing GPU algorithm, taking advantage of a block-based approach. Experimental results on real cases and synthetically generated datasets demonstrate the superiority of the new proposal with respect to state-of-the-art.
2019
2-set-2019
International Conference on Image Analysis and Processing
Trento, Italy
Sep 9-13
11752
271
281
Allegretti, Stefano; Bolelli, Federico; Cancilla, Michele; Grana, Costantino
A Block-Based Union-Find Algorithm to Label Connected Components on GPUs / Allegretti, Stefano; Bolelli, Federico; Cancilla, Michele; Grana, Costantino. - 11752:(2019), pp. 271-281. (Intervento presentato al convegno International Conference on Image Analysis and Processing tenutosi a Trento, Italy nel Sep 9-13) [10.1007/978-3-030-30645-8_25].
File in questo prodotto:
File Dimensione Formato  
2019__ICIAP_A_Block_Based_Union_Find_Algorithm_to_Label_Connected_Components_on_GPUs.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 847.27 kB
Formato Adobe PDF
847.27 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1179642
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact