Few works tackle the Human Pose Estimation on depth maps. Moreover, these methods usually rely on automatically annotated datasets, and these annotations are often imprecise and unreliable, limiting the achievable accuracy using this data as ground truth. For this reason, in this paper we propose an annotation refinement tool of human poses, by means of body joints, and a novel set of fine joint annotations for the Watch-n-Patch dataset, which has been collected with the proposed tool. Furthermore, we present a fully-convolutional architecture that performs the body pose estimation directly on depth maps. The extensive evaluation shows that the proposed architecture outperforms the competitors in different training scenarios and is able to run in real-time.

Manual Annotations on Depth Maps for Human Pose Estimation / D'Eusanio, Andrea; Pini, Stefano; Borghi, Guido; Vezzani, Roberto; Cucchiara, Rita. - (2019). ((Intervento presentato al convegno 20th International Conference on Image Analysis and Processing tenutosi a Trento, Italia nel 9-13 September 2019 [10.1007/978-3-030-30642-7_21].

Manual Annotations on Depth Maps for Human Pose Estimation

D'EUSANIO, ANDREA;Stefano Pini;Guido Borghi;Roberto Vezzani;Rita Cucchiara
2019

Abstract

Few works tackle the Human Pose Estimation on depth maps. Moreover, these methods usually rely on automatically annotated datasets, and these annotations are often imprecise and unreliable, limiting the achievable accuracy using this data as ground truth. For this reason, in this paper we propose an annotation refinement tool of human poses, by means of body joints, and a novel set of fine joint annotations for the Watch-n-Patch dataset, which has been collected with the proposed tool. Furthermore, we present a fully-convolutional architecture that performs the body pose estimation directly on depth maps. The extensive evaluation shows that the proposed architecture outperforms the competitors in different training scenarios and is able to run in real-time.
20th International Conference on Image Analysis and Processing
Trento, Italia
9-13 September 2019
D'Eusanio, Andrea; Pini, Stefano; Borghi, Guido; Vezzani, Roberto; Cucchiara, Rita
Manual Annotations on Depth Maps for Human Pose Estimation / D'Eusanio, Andrea; Pini, Stefano; Borghi, Guido; Vezzani, Roberto; Cucchiara, Rita. - (2019). ((Intervento presentato al convegno 20th International Conference on Image Analysis and Processing tenutosi a Trento, Italia nel 9-13 September 2019 [10.1007/978-3-030-30642-7_21].
File in questo prodotto:
File Dimensione Formato  
ICIAP19_Body_Pose_on_Depth.pdf

accesso aperto

Tipologia: Pre-print dell'autore (bozza pre referaggio)
Dimensione 3.47 MB
Formato Adobe PDF
3.47 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1178953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact