With the recent technological developments a vast amount of high-throughput data has been profiled to understand the mechanism of complex diseases. The current bioinformatics challenge is to interpret the data and underlying biology, where efficient algorithms for analyzing heterogeneous high-throughput data using biological networks are becoming increasingly valuable. In this paper, we propose a software package based on the Prize-collecting Steiner Forest graph optimization approach. The PCSF package performs fast and user-friendly network analysis of high-throughput data by mapping the data onto a biological networks such as protein-protein interaction, gene-gene interaction or any other correlation or coexpression based networks. Using the interaction networks as a template, it determines high-confidence subnetworks relevant to the data, which potentially leads to predictions of functional units. It also interactively visualizes the resulting subnetwork with functional enrichment analysis.
PCSF: An R-package for network-based interpretation of high-throughput data / Akhmedov, Murodzhon; Kedaigle, Amanda; Chong Renan, Escalante; Montemanni, Roberto; Bertoni, Francesco; Fraenkel, Ernest; Kwee, Ivo. - In: PLOS COMPUTATIONAL BIOLOGY. - ISSN 1553-7358. - 13:7(2017), pp. 1-7.
Data di pubblicazione: | 2017 |
Titolo: | PCSF: An R-package for network-based interpretation of high-throughput data |
Autore/i: | Akhmedov, Murodzhon; Kedaigle, Amanda; Chong Renan, Escalante; Montemanni, Roberto; Bertoni, Francesco; Fraenkel, Ernest; Kwee, Ivo |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1371/journal.pcbi.1005694 |
Rivista: | |
Volume: | 13 |
Fascicolo: | 7 |
Pagina iniziale: | 1 |
Pagina finale: | 7 |
Codice identificativo ISI: | WOS:000406619800055 |
Codice identificativo Scopus: | 2-s2.0-85026641221 |
Codice identificativo Pubmed: | 28759592 |
Citazione: | PCSF: An R-package for network-based interpretation of high-throughput data / Akhmedov, Murodzhon; Kedaigle, Amanda; Chong Renan, Escalante; Montemanni, Roberto; Bertoni, Francesco; Fraenkel, Ernest; Kwee, Ivo. - In: PLOS COMPUTATIONAL BIOLOGY. - ISSN 1553-7358. - 13:7(2017), pp. 1-7. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
journal.pcbi.1005694.pdf | Versione dell'editore (versione pubblicata) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris