A fundamental issue for the advance of self-sustainable electronic systems and remote sensor is the development of energy harvesters able to efficiently convert ambient energy into electrical energy. This paper presents an innovative simply tunable pendulum electromagnetic energy harvester, starting from conceptual design, analysis of the mechanical system and electromagnetic converter, development, and experimental assessment. The proposed system has the peculiar feature of a magnetic spring to enhance the equilibrium whichever the orientation and enabling frequency tuning. A magnetic C-frame gives a constant magnetic field through a gap, which is crossed by the coils fixed to a free end of the pendulum. The prototype, about one cubic decimeter, provides a low frequency and simply tunable modal response, together with a significant output power.
A simply tunable electromagnetic pendulum energy harvester / Castagnetti, Davide. - In: MECCANICA. - ISSN 1572-9648. - 54:6(2019), pp. 749-760. [10.1007/s11012-019-00976-7]
A simply tunable electromagnetic pendulum energy harvester
Davide Castagnetti
2019
Abstract
A fundamental issue for the advance of self-sustainable electronic systems and remote sensor is the development of energy harvesters able to efficiently convert ambient energy into electrical energy. This paper presents an innovative simply tunable pendulum electromagnetic energy harvester, starting from conceptual design, analysis of the mechanical system and electromagnetic converter, development, and experimental assessment. The proposed system has the peculiar feature of a magnetic spring to enhance the equilibrium whichever the orientation and enabling frequency tuning. A magnetic C-frame gives a constant magnetic field through a gap, which is crossed by the coils fixed to a free end of the pendulum. The prototype, about one cubic decimeter, provides a low frequency and simply tunable modal response, together with a significant output power.File | Dimensione | Formato | |
---|---|---|---|
5.Paper.Castagnetti.Meccanica.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris