The flow around bluff bodies is recognized to be a rich topic due to its huge number of applications in natural and engineering sciences. Of particular interest is the case of blunt bodies where a reattachment of the separated boundary layer before the definitive separation in the wake occurs. One of the main feature of this type of flows is the combined presence of small scales due to the occurrence of self-sustained turbulent motions and large scales due to classical vortex shedding. The complete understanding of these multiple interacting phenomena would help for a correct prediction and control of relevant features for engineering applications such as wind loads on buildings and vehicles, vibrations and acoustic insulation, heat transfer efficiency and entrainment. Archetypal of these kind of flows is the flow around a rectangular cylinder. Many studies have been carried out in the past. The general aim is the understanding of the main mechanisms behind the two unstediness of the flow, the shedding of vortices at the leading-edge shear layer and the low-frequency flapping mode of the separation bubble, see e.g Cherry et al (J Fluid Mech, 144:13–46, 1984, [1]), Kiya and Sasaki (J Fluid Mech, 154:463–491, 1985[2]), Nakamura et al (J Fluid Mech, 222:437–447, 1991, citeNakamura).

A priori analysis and benchmarking of the flow around a rectangular cylinder / Cimarelli, A.; Leonforte, A.; Angeli, D.. - 25:(2019), pp. 419-425. [10.1007/978-3-030-04915-7_55]

A priori analysis and benchmarking of the flow around a rectangular cylinder

Cimarelli, A.;Leonforte, A.;Angeli, D.
2019

Abstract

The flow around bluff bodies is recognized to be a rich topic due to its huge number of applications in natural and engineering sciences. Of particular interest is the case of blunt bodies where a reattachment of the separated boundary layer before the definitive separation in the wake occurs. One of the main feature of this type of flows is the combined presence of small scales due to the occurrence of self-sustained turbulent motions and large scales due to classical vortex shedding. The complete understanding of these multiple interacting phenomena would help for a correct prediction and control of relevant features for engineering applications such as wind loads on buildings and vehicles, vibrations and acoustic insulation, heat transfer efficiency and entrainment. Archetypal of these kind of flows is the flow around a rectangular cylinder. Many studies have been carried out in the past. The general aim is the understanding of the main mechanisms behind the two unstediness of the flow, the shedding of vortices at the leading-edge shear layer and the low-frequency flapping mode of the separation bubble, see e.g Cherry et al (J Fluid Mech, 144:13–46, 1984, [1]), Kiya and Sasaki (J Fluid Mech, 154:463–491, 1985[2]), Nakamura et al (J Fluid Mech, 222:437–447, 1991, citeNakamura).
ERCOFTAC Series
978-3-030-04914-0
978-3-030-04915-7
Springer
A priori analysis and benchmarking of the flow around a rectangular cylinder / Cimarelli, A.; Leonforte, A.; Angeli, D.. - 25:(2019), pp. 419-425. [10.1007/978-3-030-04915-7_55]
Cimarelli, A.; Leonforte, A.; Angeli, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1175380
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact