Some mineral fibers represent a health hazard because they are classified as cancer-causing chemical/physical toxicants upon (chronic) dust inhalation. Although in the last decades they have been the subject of intensive multidisciplinary investigations, the mechanisms by which mineral fibers induce toxic and pathogenic adverse effects on human health and environment are not yet fully understood. The major intricacy of the biological approach that prevents the design of a conclusive shared model of behavior of mineral fibers in a biological system stems from their very nature with intrinsic variability in chemical, molecular, structural and morphometric parameters, biodurability and surface reactivity. This paper presents the first attempt to devise a quantitative predictive model of toxicity/pathogenicity of minerals fibers based on their physical/chemical and morphological parameters. Although the author is aware that all parameters should be measured in comparable in vivo systems that accurately simulate the lung and or pleural environment, this preliminary model was conceived to deliver a fiber potential toxicity/pathogenicity index (FPTI) to be integrated with the biological approach so to create a quantitative predictive model of behavior of mineral fibers in a biological system. The FPTI model is thought to be a predictive tool aimed at ranking the toxicity and pathogenicity potential of fibers like asbestos or unregulated/unclassified mineral fibers. It may eventually be applied to other materials like man-made synthetic fibers and elongated mineral particles (EMP). Work is in progress to revise and validate the model in joint collaboration with international competent organizations, and to deliver a FPTI model-based user-friendly code.

Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers / Gualtieri, Alessandro F.. - In: TOXICOLOGY AND APPLIED PHARMACOLOGY. - ISSN 0041-008X. - 361:(2018), pp. 89-98. [10.1016/j.taap.2018.05.012]

Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers

Gualtieri, Alessandro F.
2018

Abstract

Some mineral fibers represent a health hazard because they are classified as cancer-causing chemical/physical toxicants upon (chronic) dust inhalation. Although in the last decades they have been the subject of intensive multidisciplinary investigations, the mechanisms by which mineral fibers induce toxic and pathogenic adverse effects on human health and environment are not yet fully understood. The major intricacy of the biological approach that prevents the design of a conclusive shared model of behavior of mineral fibers in a biological system stems from their very nature with intrinsic variability in chemical, molecular, structural and morphometric parameters, biodurability and surface reactivity. This paper presents the first attempt to devise a quantitative predictive model of toxicity/pathogenicity of minerals fibers based on their physical/chemical and morphological parameters. Although the author is aware that all parameters should be measured in comparable in vivo systems that accurately simulate the lung and or pleural environment, this preliminary model was conceived to deliver a fiber potential toxicity/pathogenicity index (FPTI) to be integrated with the biological approach so to create a quantitative predictive model of behavior of mineral fibers in a biological system. The FPTI model is thought to be a predictive tool aimed at ranking the toxicity and pathogenicity potential of fibers like asbestos or unregulated/unclassified mineral fibers. It may eventually be applied to other materials like man-made synthetic fibers and elongated mineral particles (EMP). Work is in progress to revise and validate the model in joint collaboration with international competent organizations, and to deliver a FPTI model-based user-friendly code.
2018
22-mag-2018
361
89
98
Towards a quantitative model to predict the toxicity/pathogenicity potential of mineral fibers / Gualtieri, Alessandro F.. - In: TOXICOLOGY AND APPLIED PHARMACOLOGY. - ISSN 0041-008X. - 361:(2018), pp. 89-98. [10.1016/j.taap.2018.05.012]
Gualtieri, Alessandro F.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0041008X18302114-main.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 660.99 kB
Formato Adobe PDF
660.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1175296
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 42
social impact