Background: Lack of interphase compatibility between the fabric and the matrix significantly impairs the load-bearing capacity of textile reinforced mortar (TRM). In this study, we consider the application of two inorganic surface coatings for enhancing the interphase bond properties. Methods: Either of two silica-based coatings, namely nano- and micro-silica, were applied to alkali-resistant glass (ARG) and to hybrid carbon–ARG woven fabric. Mechanical performance of TRM reinforced with the uncoated and the coated fabric was compared in uniaxial tensile tests. Results: Mechanical testing provides evidence of a remarkable enhancement in terms of ultimate strength and deformability for the coated specimens. This effect can be ascribed to the improved hydrophilicity of the fibers’ surface and to the activation of pozzolanic reaction at the interphase. In addition, penetration of nano- and microparticles in the bundle of the textile yarns reduces the occurrence of telescopic failure.
Lime-cement textile reinforced mortar (TRM) with modified interphase / Signorini, Cesare; Sola, Antonella; Nobili, Andrea; Siligardi, Cristina. - In: JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS. - ISSN 2280-8000. - 17:1(2019), pp. 1-9. [10.1177/2280800019827823]
Lime-cement textile reinforced mortar (TRM) with modified interphase
Cesare Signorini
;Antonella SolaMembro del Collaboration Group
;Andrea NobiliProject Administration
;Cristina SiligardiMembro del Collaboration Group
2019
Abstract
Background: Lack of interphase compatibility between the fabric and the matrix significantly impairs the load-bearing capacity of textile reinforced mortar (TRM). In this study, we consider the application of two inorganic surface coatings for enhancing the interphase bond properties. Methods: Either of two silica-based coatings, namely nano- and micro-silica, were applied to alkali-resistant glass (ARG) and to hybrid carbon–ARG woven fabric. Mechanical performance of TRM reinforced with the uncoated and the coated fabric was compared in uniaxial tensile tests. Results: Mechanical testing provides evidence of a remarkable enhancement in terms of ultimate strength and deformability for the coated specimens. This effect can be ascribed to the improved hydrophilicity of the fibers’ surface and to the activation of pozzolanic reaction at the interphase. In addition, penetration of nano- and microparticles in the bundle of the textile yarns reduces the occurrence of telescopic failure.File | Dimensione | Formato | |
---|---|---|---|
2280800019827823.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
991.83 kB
Formato
Adobe PDF
|
991.83 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris