Multi-core fiber capability to deliver several independent beams in a single structure has been deeply investigated to obtain spatial multiplexing in optical communication. Recently, the coherent beam multiplexing idea has been extended to high power fiber laser field, where multi-core fiber amplifiers, combining low power beams, promise to overcome thermal mode instability, which characterizes single-core fiber amplifiers. Although coherent output beam combination is advantaged in multi-core fiber, the understanding of core phase shifts is necessary to implement efficient beam combination. In presence of thermal load, induced by pump-to-signal conversion quantum defect, a refractive index gradient is formed on the multi-core fiber amplifier cross-section, thus changing core propagation properties and possibly creating unwanted core couplings. In this work a 9-core double-cladding fiber amplifier is numerically investigated by varying the core thermal load, from 2 to 15 W/m, in order to understand the structure propagation mismatch. The 9 cores are organized in a 3×3 regular grid, each core has a diameter of 19 μm and a spacing of 55 μm. Cores numerical aperture is 0.06. The outer cladding has a diameter of 340 μm. A comparison between a rod-type fiber amplifier configuration and a flexible fiber amplifier has been performed. Results show that the cores can be divided in three groups according to their propagation properties: central core, side cores, and corner ones. The phase shift between these groups, or equivalently the effective index difference, becomes higher with the increase of thermal load. These observations are fundamental to implement a model for beam propagation in presence of thermal effect, to investigate the amplification dynamics along z-direction.

Guidance properties and phase shift of a 9-core fiber amplifier for high power operation in presence of consistent thermal load / Molardi, Carlo; Pallangal, Shahul H.; Rosa, Lorenzo; Vincetti, Luca; Poli, Federica; Selleri, Stefano; Cucinotta, Annamaria. - 10897:(2019). (Intervento presentato al convegno SPIE LASE 2019 tenutosi a San Francisco, USA nel 2-7 February 2019) [10.1117/12.2509804].

Guidance properties and phase shift of a 9-core fiber amplifier for high power operation in presence of consistent thermal load

Rosa, Lorenzo;Vincetti, Luca;Poli, Federica;Selleri, Stefano;
2019

Abstract

Multi-core fiber capability to deliver several independent beams in a single structure has been deeply investigated to obtain spatial multiplexing in optical communication. Recently, the coherent beam multiplexing idea has been extended to high power fiber laser field, where multi-core fiber amplifiers, combining low power beams, promise to overcome thermal mode instability, which characterizes single-core fiber amplifiers. Although coherent output beam combination is advantaged in multi-core fiber, the understanding of core phase shifts is necessary to implement efficient beam combination. In presence of thermal load, induced by pump-to-signal conversion quantum defect, a refractive index gradient is formed on the multi-core fiber amplifier cross-section, thus changing core propagation properties and possibly creating unwanted core couplings. In this work a 9-core double-cladding fiber amplifier is numerically investigated by varying the core thermal load, from 2 to 15 W/m, in order to understand the structure propagation mismatch. The 9 cores are organized in a 3×3 regular grid, each core has a diameter of 19 μm and a spacing of 55 μm. Cores numerical aperture is 0.06. The outer cladding has a diameter of 340 μm. A comparison between a rod-type fiber amplifier configuration and a flexible fiber amplifier has been performed. Results show that the cores can be divided in three groups according to their propagation properties: central core, side cores, and corner ones. The phase shift between these groups, or equivalently the effective index difference, becomes higher with the increase of thermal load. These observations are fundamental to implement a model for beam propagation in presence of thermal effect, to investigate the amplification dynamics along z-direction.
2019
7-mar-2019
SPIE LASE 2019
San Francisco, USA
2-7 February 2019
10897
Molardi, Carlo; Pallangal, Shahul H.; Rosa, Lorenzo; Vincetti, Luca; Poli, Federica; Selleri, Stefano; Cucinotta, Annamaria
Guidance properties and phase shift of a 9-core fiber amplifier for high power operation in presence of consistent thermal load / Molardi, Carlo; Pallangal, Shahul H.; Rosa, Lorenzo; Vincetti, Luca; Poli, Federica; Selleri, Stefano; Cucinotta, Annamaria. - 10897:(2019). (Intervento presentato al convegno SPIE LASE 2019 tenutosi a San Francisco, USA nel 2-7 February 2019) [10.1117/12.2509804].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1172578
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact