Modern automotive grade embedded platforms feature high performance Graphics Processing Units (GPUs) to support the massively parallel processing power needed for next-generation autonomous driving applications. Hence, a GPU scheduling approach with strong Real-Time guarantees is needed. While previous research efforts focused on reverse engineering the GPU ecosystem in order to understand and control GPU scheduling on NVIDIA platforms, we provide an in depth explanation of the NVIDIA standard approach to GPU application scheduling on a Drive PX platform. Then, we discuss how a privileged scheduling server can be used to enforce arbitrary scheduling policies in a virtualized environment.
Work-in-Progress: NVIDIA GPU Scheduling Details in Virtualized Environments / Capodieci, Nicola; Cavicchioli, Roberto; Bertogna, Marko. - (2018). (Intervento presentato al convegno 18th ACM SIGBED International Conference on Embedded Software, EMSOFT 2018 tenutosi a Torino, Italia nel 30 Sept.-5 Oct. 2018) [10.1109/EMSOFT.2018.8537220].
Work-in-Progress: NVIDIA GPU Scheduling Details in Virtualized Environments
Nicola Capodieci;Roberto Cavicchioli;Marko Bertogna
2018
Abstract
Modern automotive grade embedded platforms feature high performance Graphics Processing Units (GPUs) to support the massively parallel processing power needed for next-generation autonomous driving applications. Hence, a GPU scheduling approach with strong Real-Time guarantees is needed. While previous research efforts focused on reverse engineering the GPU ecosystem in order to understand and control GPU scheduling on NVIDIA platforms, we provide an in depth explanation of the NVIDIA standard approach to GPU application scheduling on a Drive PX platform. Then, we discuss how a privileged scheduling server can be used to enforce arbitrary scheduling policies in a virtualized environment.File | Dimensione | Formato | |
---|---|---|---|
WIP__Deadline_based_Scheduling_for_GPU_with_Preemption_Support.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
465.98 kB
Formato
Adobe PDF
|
465.98 kB | Adobe PDF | Visualizza/Apri |
Work-in-Progress_NVIDIA_GPU_Scheduling_Details_in_Virtualized_Environments.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
612.32 kB
Formato
Adobe PDF
|
612.32 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris