Xanthine is a nucleobase, deriving from adenine and guanine by deamination and oxidation processes, which may deposit in the human body causing diseases, similar to uric acid. Here, we have investigated the adsorption of xanthine on silver colloidal nanoparticles by means of surface-enhanced Raman scattering (SERS) with an exciting radiation in the near-infrared spectral region, where interference due to fluorescence does not occur, along with density functional theory calculations of molecule/metal model systems. By adopting a combined experimental and computational approach, we have identified the "marker" SERS bands of xanthine and the tautomer that preferentially binds the silver particles, as well as the molecular group involved in the interaction with metal. This investigation allows using the FT-SERS spectroscopy for biosensory and diagnostic purposes in body fluids, detecting abnormal levels of xanthine, and preventing metabolic diseases.
Raman and Computational Study on the Adsorption of Xanthine on Silver Nanocolloids / Muniz-Miranda, Francesco; Pedone, Alfonso; Muniz-Miranda, Maurizio. - In: ACS OMEGA. - ISSN 2470-1343. - 3:10(2018), pp. 13530-13537. [10.1021/acsomega.8b02174]
Raman and Computational Study on the Adsorption of Xanthine on Silver Nanocolloids
Muniz-Miranda, Francesco;Pedone, Alfonso;
2018
Abstract
Xanthine is a nucleobase, deriving from adenine and guanine by deamination and oxidation processes, which may deposit in the human body causing diseases, similar to uric acid. Here, we have investigated the adsorption of xanthine on silver colloidal nanoparticles by means of surface-enhanced Raman scattering (SERS) with an exciting radiation in the near-infrared spectral region, where interference due to fluorescence does not occur, along with density functional theory calculations of molecule/metal model systems. By adopting a combined experimental and computational approach, we have identified the "marker" SERS bands of xanthine and the tautomer that preferentially binds the silver particles, as well as the molecular group involved in the interaction with metal. This investigation allows using the FT-SERS spectroscopy for biosensory and diagnostic purposes in body fluids, detecting abnormal levels of xanthine, and preventing metabolic diseases.File | Dimensione | Formato | |
---|---|---|---|
art104.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris