Simple comparative correlation analyses and quantitative structure–kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug–target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling.

Computational modeling approaches to quantitative structure–binding kinetics relationships in drug discovery / De Benedetti, Pier G.; Fanelli, Francesca. - In: DRUG DISCOVERY TODAY. - ISSN 1359-6446. - 23:7(2018), pp. 1396-1406. [10.1016/j.drudis.2018.03.010]

Computational modeling approaches to quantitative structure–binding kinetics relationships in drug discovery

De Benedetti, Pier G.
;
Fanelli, Francesca
2018

Abstract

Simple comparative correlation analyses and quantitative structure–kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug–target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling.
2018
21-mar-2018
23
7
1396
1406
Computational modeling approaches to quantitative structure–binding kinetics relationships in drug discovery / De Benedetti, Pier G.; Fanelli, Francesca. - In: DRUG DISCOVERY TODAY. - ISSN 1359-6446. - 23:7(2018), pp. 1396-1406. [10.1016/j.drudis.2018.03.010]
De Benedetti, Pier G.; Fanelli, Francesca
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1359644617301605-main.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 542.74 kB
Formato Adobe PDF
542.74 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1171821
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact