In this paper, a log-linear multidimensional Rasch model is proposed for capture-recapture analysis of registration data. In the model, heterogeneity of capture probabilities is taken into account, and registrations are viewed as dichotomously scored indicators of one or more latent variables that can account for correlations among registrations. It is shown how the probability of a generic capture profile is expressed under the log-linear multidimensional Rasch model and how the parameters of the traditional log-linear model are derived from those of the log-linear multidimensional Rasch model. Finally, an application of the model to neural tube defects data is presented.

A log-linear multidimensional Rasch model for capture-recapture / Pelle, E.; Hessen, D. J.; van der Heijden, P. G. M.. - In: STATISTICS IN MEDICINE. - ISSN 0277-6715. - 35:4(2016), pp. 622-634. [10.1002/sim.6741]

A log-linear multidimensional Rasch model for capture-recapture

Pelle, E.
;
2016

Abstract

In this paper, a log-linear multidimensional Rasch model is proposed for capture-recapture analysis of registration data. In the model, heterogeneity of capture probabilities is taken into account, and registrations are viewed as dichotomously scored indicators of one or more latent variables that can account for correlations among registrations. It is shown how the probability of a generic capture profile is expressed under the log-linear multidimensional Rasch model and how the parameters of the traditional log-linear model are derived from those of the log-linear multidimensional Rasch model. Finally, an application of the model to neural tube defects data is presented.
2016
30-set-2015
35
4
622
634
A log-linear multidimensional Rasch model for capture-recapture / Pelle, E.; Hessen, D. J.; van der Heijden, P. G. M.. - In: STATISTICS IN MEDICINE. - ISSN 0277-6715. - 35:4(2016), pp. 622-634. [10.1002/sim.6741]
Pelle, E.; Hessen, D. J.; van der Heijden, P. G. M.
File in questo prodotto:
File Dimensione Formato  
Pubblicazione1_Pelle.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 327.03 kB
Formato Adobe PDF
327.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1171627
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact