In this paper the authors describe the development and the characterization of a Quartz Crystal Microbalance (QCM) sensor for N02 detection with the sensitive layer made of a thin films of poly (3,4-ethylenedioxythiophene) (PEDOT). The PEDOT layer was obtained by electropolymerization on one of the gold electrodes of a 10 MHz AT-cut commercial quartz crystal. The sensor performance in terms of sensitivity and selectivity were assessed exploiting an ad hoc chemical sampling unit, and a low noise conditioning and processing electronic system. This latter consists of an oscillator hosting the piezoelectric resonator, and of a frequency measurement system granting a (short time) relative accuracy of approximately 10-8, which ensures a mass resolution in the order of the ng. The preliminary obtained results show a N02resolution and sensitivity of the order of 1 ppm, and 2.6 Hz/ppm, respectively, at 35°C constant room temperature and in a dry environment, and show that a satisfactory repeatability can be achieved with recovery cycles in N2at room temperature.

N02QCM gas sensor based on electrochemical deposition of PEDOT / Forti, Alessio; Innocenti, Massimo; Foreste, M. L.; Mugnaini, M.; Pasquini, I.; Pigani, L.; Rocchil, S.; Vignoli, V.. - (2009), pp. 184-187. (Intervento presentato al convegno 3rd International Workshop on Advances in Sensors and Interfaces, IWASI 2009 tenutosi a Trani, ita nel 2009) [10.1109/IWASI.2009.5184792].

N02QCM gas sensor based on electrochemical deposition of PEDOT

Pigani, L.;
2009

Abstract

In this paper the authors describe the development and the characterization of a Quartz Crystal Microbalance (QCM) sensor for N02 detection with the sensitive layer made of a thin films of poly (3,4-ethylenedioxythiophene) (PEDOT). The PEDOT layer was obtained by electropolymerization on one of the gold electrodes of a 10 MHz AT-cut commercial quartz crystal. The sensor performance in terms of sensitivity and selectivity were assessed exploiting an ad hoc chemical sampling unit, and a low noise conditioning and processing electronic system. This latter consists of an oscillator hosting the piezoelectric resonator, and of a frequency measurement system granting a (short time) relative accuracy of approximately 10-8, which ensures a mass resolution in the order of the ng. The preliminary obtained results show a N02resolution and sensitivity of the order of 1 ppm, and 2.6 Hz/ppm, respectively, at 35°C constant room temperature and in a dry environment, and show that a satisfactory repeatability can be achieved with recovery cycles in N2at room temperature.
2009
3rd International Workshop on Advances in Sensors and Interfaces, IWASI 2009
Trani, ita
2009
184
187
Forti, Alessio; Innocenti, Massimo; Foreste, M. L.; Mugnaini, M.; Pasquini, I.; Pigani, L.; Rocchil, S.; Vignoli, V.
N02QCM gas sensor based on electrochemical deposition of PEDOT / Forti, Alessio; Innocenti, Massimo; Foreste, M. L.; Mugnaini, M.; Pasquini, I.; Pigani, L.; Rocchil, S.; Vignoli, V.. - (2009), pp. 184-187. (Intervento presentato al convegno 3rd International Workshop on Advances in Sensors and Interfaces, IWASI 2009 tenutosi a Trani, ita nel 2009) [10.1109/IWASI.2009.5184792].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1171598
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 0
social impact