Multi-criteria inventory classification groups similar items in order to facilitate their management. Data envelopment analysis (DEA) and its many variants have been used extensively for this purpose. However, DEA provides only a ranking and classes are often constructed arbitrarily with percentages. This paper introduces DEASort, a variant of DEA aimed at sorting problems. In order to avoid unrealistic classification, the expertise of decision-makers is incorporated, providing typical examples of items for each class and giving the weights of the criteria with the Analytic Hierarchy Process (AHP). This information bounds the possible weights and is added as a constraint in the model. DEASort is illustrated using a real case study of a company managing warehouses that stock spare parts.
DEASort: Assigning items with data envelopment analysis in ABC classes / Ishizaka, Alessio; Lolli, Francesco; Balugani, Elia; Cavallieri, Rita; Gamberini, Rita. - In: INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS. - ISSN 0925-5273. - 199:(2018), pp. 7-15. [10.1016/j.ijpe.2018.02.007]
DEASort: Assigning items with data envelopment analysis in ABC classes
Lolli, Francesco;Balugani, Elia;Cavallieri, Rita;Gamberini, Rita
2018
Abstract
Multi-criteria inventory classification groups similar items in order to facilitate their management. Data envelopment analysis (DEA) and its many variants have been used extensively for this purpose. However, DEA provides only a ranking and classes are often constructed arbitrarily with percentages. This paper introduces DEASort, a variant of DEA aimed at sorting problems. In order to avoid unrealistic classification, the expertise of decision-makers is incorporated, providing typical examples of items for each class and giving the weights of the criteria with the Analytic Hierarchy Process (AHP). This information bounds the possible weights and is added as a constraint in the model. DEASort is illustrated using a real case study of a company managing warehouses that stock spare parts.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0925527318300963-main.pdf
Accesso riservato
Descrizione: Versione dell'editore
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.07 MB
Formato
Adobe PDF
|
1.07 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Ishizaka_et_al___2018___DEASort_Assigning_items_with_data_envelopment_analysis_in_ABC_classes.pdf
Open Access dal 01/06/2021
Descrizione: Post-print
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
436.81 kB
Formato
Adobe PDF
|
436.81 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris