The quantification of urea is of the utmost importance not only in medical diagnosis, where it serves as a potential indicator of kidney and liver disfunction, but also in food safety and environmental control. Here, we describe a urea biosensor based on urease entrapped in a crosslinked gelatin hydrogel, deposited onto a fully printed PEDOT:PSS-based organic electrochemical transistor (OECT). The device response is based on the modulation of the channel conductivity by the ionic species produced upon urea hydrolysis catalyzed by the entrapped urease. The biosensor shows excellent reproducibility, a limit of detection as low as 1 μM and a response time of a few minutes. The fabrication of the OECTs by screen-printing on flexible substrates ensures a significant reduction in manufacturing time and costs. The low dimensionality and operational voltages (0.5 V or below) of these devices contribute to make these enzymatic OECT-based biosensors as appealing candidates for high-throughput monitoring of urea levels at the point-of-care or in the field.

Label free urea biosensor based on organic electrochemical transistors / Berto, Marcello; Diacci, Chiara; Theuer, Lorenz; Di Lauro, Michele; Simon, Daniel T.; Berggren, Magnus; Biscarini, Fabio; Beni, Valerio; Bortolotti, Carlo A.. - In: FLEXIBLE AND PRINTED ELECTRONICS. - ISSN 2058-8585. - 3:2(2018), pp. N/A-N/A. [10.1088/2058-8585/aac8a8]

Label free urea biosensor based on organic electrochemical transistors

Berto, Marcello;Di Lauro, Michele;Biscarini, Fabio;Bortolotti, Carlo A.
2018

Abstract

The quantification of urea is of the utmost importance not only in medical diagnosis, where it serves as a potential indicator of kidney and liver disfunction, but also in food safety and environmental control. Here, we describe a urea biosensor based on urease entrapped in a crosslinked gelatin hydrogel, deposited onto a fully printed PEDOT:PSS-based organic electrochemical transistor (OECT). The device response is based on the modulation of the channel conductivity by the ionic species produced upon urea hydrolysis catalyzed by the entrapped urease. The biosensor shows excellent reproducibility, a limit of detection as low as 1 μM and a response time of a few minutes. The fabrication of the OECTs by screen-printing on flexible substrates ensures a significant reduction in manufacturing time and costs. The low dimensionality and operational voltages (0.5 V or below) of these devices contribute to make these enzymatic OECT-based biosensors as appealing candidates for high-throughput monitoring of urea levels at the point-of-care or in the field.
3
2
N/A
N/A
Label free urea biosensor based on organic electrochemical transistors / Berto, Marcello; Diacci, Chiara; Theuer, Lorenz; Di Lauro, Michele; Simon, Daniel T.; Berggren, Magnus; Biscarini, Fabio; Beni, Valerio; Bortolotti, Carlo A.. - In: FLEXIBLE AND PRINTED ELECTRONICS. - ISSN 2058-8585. - 3:2(2018), pp. N/A-N/A. [10.1088/2058-8585/aac8a8]
Berto, Marcello; Diacci, Chiara; Theuer, Lorenz; Di Lauro, Michele; Simon, Daniel T.; Berggren, Magnus; Biscarini, Fabio; Beni, Valerio; Bortolotti, Carlo A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1169987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact