Brualdi and Hollingsworth conjectured in Brualdi and Hollingsworth (1996) that in any complete graph K2n, n≥3, which is properly colored with 2n−1 colors, the edge set can be partitioned into n edge disjoint rainbow spanning trees (where a graph is said to be rainbow if its edges have distinct colors). Constantine (2002) strengthened this conjecture asking the rainbow spanning trees to be pairwise isomorphic. He also showed an example satisfying his conjecture for every 2n∈{2s:s≥3}∪{5⋅2s,s≥1}. Caughmann, Krussel and Mahoney (2017) recently showed a first infinite family of edge colorings for which the conjecture of Brualdi and Hollingsworth can be verified. In the present paper, we extend this result to all edge-colorings arising from cyclic 1-factorizations of K2n constructed by Hartman and Rosa (1985). Finally, we remark that our constructions permit to extend Constatine's result also to all 2n∈{2sd:s≥1,d>3odd}.
Rainbow spanning tree decompositions in complete graphs colored by cyclic 1-factorizations / Rinaldi, G.; Mazzuoccolo, G.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 342:4(2019), pp. 1006-1016. [10.1016/j.disc.2018.11.026]
Rainbow spanning tree decompositions in complete graphs colored by cyclic 1-factorizations
Rinaldi G.
;Mazzuoccolo G.
2019
Abstract
Brualdi and Hollingsworth conjectured in Brualdi and Hollingsworth (1996) that in any complete graph K2n, n≥3, which is properly colored with 2n−1 colors, the edge set can be partitioned into n edge disjoint rainbow spanning trees (where a graph is said to be rainbow if its edges have distinct colors). Constantine (2002) strengthened this conjecture asking the rainbow spanning trees to be pairwise isomorphic. He also showed an example satisfying his conjecture for every 2n∈{2s:s≥3}∪{5⋅2s,s≥1}. Caughmann, Krussel and Mahoney (2017) recently showed a first infinite family of edge colorings for which the conjecture of Brualdi and Hollingsworth can be verified. In the present paper, we extend this result to all edge-colorings arising from cyclic 1-factorizations of K2n constructed by Hartman and Rosa (1985). Finally, we remark that our constructions permit to extend Constatine's result also to all 2n∈{2sd:s≥1,d>3odd}.File | Dimensione | Formato | |
---|---|---|---|
Rainbow_trees_FINAL_VERSION_24092018.pdf
Accesso riservato
Descrizione: articolo principale
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
321.05 kB
Formato
Adobe PDF
|
321.05 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0012365X18304217-main.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
393.88 kB
Formato
Adobe PDF
|
393.88 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris