Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.
CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers / Galperin, Moran; Farenc, Carine; Mukhopadhyay, Madhura; Jayasinghe, Dhilshan; Decroos, Amandine; Benati, Daniela; Tan, Li Lynn; Ciacchi, Lisa; Reid, Hugh H; Rossjohn, Jamie; Chakrabarti, Lisa A; Gras, Stephanie. - In: SCIENCE IMMUNOLOGY. - ISSN 2470-9468. - 3:24(2018), pp. N/A-N/A. [10.1126/sciimmunol.aat0687]
CD4+ T cell-mediated HLA class II cross-restriction in HIV controllers
Benati, Daniela;
2018
Abstract
Rare individuals, termed HIV controllers, spontaneously control HIV infection by mounting efficient T cell responses against the virus. Protective CD4+ T cell responses from HIV controllers involve high-affinity public T cell receptors (TCRs) recognizing an immunodominant capsid epitope (Gag293) presented by a remarkably broad array of human leukocyte antigen (HLA) class II molecules. Here, we determine the structures of a prototypical public TCR bound to HLA-DR1, HLA-DR11, and HLA-DR15 molecules presenting the Gag293 epitope. TCR recognition was driven by contacts with the Gag293 epitope, a feature that underpinned the extensive HLA cross-restriction. These high-affinity TCRs promoted mature immunological synapse formation and cytotoxic capacity in both CD4+ and CD8+ T cells. The public TCRs suppressed HIV replication in multiple genetic backgrounds ex vivo, emphasizing the functional advantage conferred by broad HLA class II cross-restriction.File | Dimensione | Formato | |
---|---|---|---|
GalperinM-SciImmunol2018.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.82 MB
Formato
Adobe PDF
|
2.82 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris