A well-known hypothesis, with far-reaching implications, is that biological evolution should preferentially lead to states that are dynamically critical. In previous papers, we showed that a well-known model of genetic regulatory networks, namely, that of random Boolean networks, allows one to study in depth the relationship between the dynamical regime of a living being's gene network and its response to permanent perturbations. In this paper, we analyze a huge set of new experimental data on single gene knockouts in S. cerevisiae, laying down a statistical framework to determine its dynamical regime. We find that the S. cerevisiae network appears to be slightly ordered, but close to the critical region. Since our analysis relies on dichotomizing continuous data, we carefully consider the issue of an optimal threshold choice.
Dynamical Criticality in Gene Regulatory Networks / Villani, Marco; La Rocca, Luca; Kauffman, Stuart Alan; Serra, Roberto. - In: COMPLEXITY. - ISSN 1076-2787. - 2018:(2018), pp. 1-14. [10.1155/2018/5980636]
Dynamical Criticality in Gene Regulatory Networks
Villani, Marco
;La Rocca, Luca;Serra, Roberto
2018
Abstract
A well-known hypothesis, with far-reaching implications, is that biological evolution should preferentially lead to states that are dynamically critical. In previous papers, we showed that a well-known model of genetic regulatory networks, namely, that of random Boolean networks, allows one to study in depth the relationship between the dynamical regime of a living being's gene network and its response to permanent perturbations. In this paper, we analyze a huge set of new experimental data on single gene knockouts in S. cerevisiae, laying down a statistical framework to determine its dynamical regime. We find that the S. cerevisiae network appears to be slightly ordered, but close to the critical region. Since our analysis relies on dichotomizing continuous data, we carefully consider the issue of an optimal threshold choice.File | Dimensione | Formato | |
---|---|---|---|
5980636.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.22 MB
Formato
Adobe PDF
|
2.22 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris