The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl trasferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.

Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population / Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Skov Sørensen, Uffe B.; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada; Melin, P.; Decheva, A.; Petrunov, B.; Kriz, P.; Berner, R.; Hufnagel, M.; Kunze, M.; Creti, R.; Baldassarri, L.; Berardi, A.; Orefici, G.; Granger, J. R.; De La Rosa Fraile, M.; Afshar, B.; Efstratiou, A.; Maione, D.; Telford, J. L.. - In: PLOS ONE. - ISSN 1932-6203. - 10:5(2015), pp. 1-20. [10.1371/journal.pone.0125985]

Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population

TONIOLO, CHIARA;Berardi, A.;
2015

Abstract

The human and bovine bacterial pathogen Streptococcus agalactiae (Group B Streptococcus, GBS) expresses a thick polysaccharide capsule that constitutes a major virulence factor and vaccine target. GBS can be classified into ten distinct serotypes differing in the chemical composition of their capsular polysaccharide. However, non-typeable strains that do not react with anti-capsular sera are frequently isolated from colonized and infected humans and cattle. To gain a comprehensive insight into the molecular basis for the loss of capsule expression in GBS, a collection of well-characterized non-typeable strains was investigated by genome sequencing. Genome based phylogenetic analysis extended to a wide population of sequenced strains confirmed the recently observed high clonality among GBS lineages mainly containing human strains, and revealed a much higher degree of diversity in the bovine population. Remarkably, non-typeable strains were equally distributed in all lineages. A number of distinct mutations in the cps operon were identified that were apparently responsible for inactivation of capsule synthesis. The most frequent genetic alterations were point mutations leading to stop codons in the cps genes, and the main target was found to be cpsE encoding the portal glycosyl trasferase of capsule biosynthesis. Complementation of strains carrying missense mutations in cpsE with a wild-type gene restored capsule expression allowing the identification of amino acid residues essential for enzyme activity.
2015
10
5
1
20
Genomic analysis reveals the molecular basis for capsule loss in the group B Streptococcus population / Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Skov Sørensen, Uffe B.; Kilian, Mogens; Ramirez, Mario; Janulczyk, Robert; Donati, Claudio; Grandi, Guido; Margarit, Immaculada; Melin, P.; Decheva, A.; Petrunov, B.; Kriz, P.; Berner, R.; Hufnagel, M.; Kunze, M.; Creti, R.; Baldassarri, L.; Berardi, A.; Orefici, G.; Granger, J. R.; De La Rosa Fraile, M.; Afshar, B.; Efstratiou, A.; Maione, D.; Telford, J. L.. - In: PLOS ONE. - ISSN 1932-6203. - 10:5(2015), pp. 1-20. [10.1371/journal.pone.0125985]
Rosini, Roberto; Campisi, Edmondo; De Chiara, Matteo; Tettelin, Hervé; Rinaudo, Daniela; Toniolo, Chiara; Metruccio, Matteo; Guidotti, Silvia; Skov Sø...espandi
File in questo prodotto:
File Dimensione Formato  
Analisi genetica rivela basi per perdita capsula (Rosini, PLoS One 2015).PDF

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1168375
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 26
social impact