Fibro-adipogenic progenitors (FAPs) are currently defined by their anatomical position, expression of non-specific membrane-associated proteins, and ability to adopt multiple lineages in vitro. Gene expression analysis at single-cell level reveals that FAPs undergo dynamic transitions through a spectrum of cell states that can be identified by differential expression levels of Tie2 and Vcam1. Different patterns of Vcam1-negative Tie2highor Tie2lowand Tie2low/Vcam1-expressing FAPs are detected during neonatal myogenesis, response to acute injury and Duchenne Muscular Dystrophy (DMD). RNA sequencing analysis identified cell state-specific transcriptional profiles that predict functional interactions with satellite and inflammatory cells. In particular, Vcam1-expressing FAPs, which exhibit a pro-fibrotic expression profile, are transiently activated by acute injury in concomitance with the inflammatory response. Aberrant persistence of Vcam1-expressing FAPs is detected in DMD muscles or upon macrophage depletion, and is associated with muscle fibrosis, thereby revealing how disruption of inflammation-regulated FAPs dynamics leads to a pathogenic outcome.
Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy / Malecova, Barbora; Gatto, Sole; Etxaniz, Usue; Passafaro, Magda; Cortez, Amy; Nicoletti, Chiara; Giordani, Lorenzo; Torcinaro, Alessio; De Bardi, Marco; Bicciato, Silvio; De Santa, Francesca; Madaro, Luca; Puri, Pier Lorenzo. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 9:1(2018), pp. 3670-3682. [10.1038/s41467-018-06068-6]
Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy
NICOLETTI, CHIARASoftware
;Bicciato, SilvioMethodology
;
2018
Abstract
Fibro-adipogenic progenitors (FAPs) are currently defined by their anatomical position, expression of non-specific membrane-associated proteins, and ability to adopt multiple lineages in vitro. Gene expression analysis at single-cell level reveals that FAPs undergo dynamic transitions through a spectrum of cell states that can be identified by differential expression levels of Tie2 and Vcam1. Different patterns of Vcam1-negative Tie2highor Tie2lowand Tie2low/Vcam1-expressing FAPs are detected during neonatal myogenesis, response to acute injury and Duchenne Muscular Dystrophy (DMD). RNA sequencing analysis identified cell state-specific transcriptional profiles that predict functional interactions with satellite and inflammatory cells. In particular, Vcam1-expressing FAPs, which exhibit a pro-fibrotic expression profile, are transiently activated by acute injury in concomitance with the inflammatory response. Aberrant persistence of Vcam1-expressing FAPs is detected in DMD muscles or upon macrophage depletion, and is associated with muscle fibrosis, thereby revealing how disruption of inflammation-regulated FAPs dynamics leads to a pathogenic outcome.File | Dimensione | Formato | |
---|---|---|---|
Malecova_et_al_NatComm_2018.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.65 MB
Formato
Adobe PDF
|
2.65 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris