In this paper we implement an efficient non-parametric statistical method, Random survival forests, for the selection of the determinants of Central Bank Independence (CBI) among a large database of political and economic variables for OECD countries. This statistical technique enables us to overcome omitted variables and overfitting problems. It turns out that the economic variables are major determinants compared to the political ones and linear and nonlinear effects of chosen predictors on CBI are found.

A Random Forests Approach to Assess Determinants of Central Bank Independence / Cavicchioli, Maddalena; Papana, Angeliki; Papana Dagiasis, Ariadni; Pistoresi, Barbara. - In: JOURNAL OF MODERN APPLIED STATISTICAL METHODS. - ISSN 1538-9472. - 17:2(2018), pp. 1-21. [10.22237/jmasm/1553610953]

A Random Forests Approach to Assess Determinants of Central Bank Independence

Maddalena Cavicchioli;Barbara Pistoresi
2018

Abstract

In this paper we implement an efficient non-parametric statistical method, Random survival forests, for the selection of the determinants of Central Bank Independence (CBI) among a large database of political and economic variables for OECD countries. This statistical technique enables us to overcome omitted variables and overfitting problems. It turns out that the economic variables are major determinants compared to the political ones and linear and nonlinear effects of chosen predictors on CBI are found.
2018
17
2
1
21
A Random Forests Approach to Assess Determinants of Central Bank Independence / Cavicchioli, Maddalena; Papana, Angeliki; Papana Dagiasis, Ariadni; Pistoresi, Barbara. - In: JOURNAL OF MODERN APPLIED STATISTICAL METHODS. - ISSN 1538-9472. - 17:2(2018), pp. 1-21. [10.22237/jmasm/1553610953]
Cavicchioli, Maddalena; Papana, Angeliki; Papana Dagiasis, Ariadni; Pistoresi, Barbara
File in questo prodotto:
File Dimensione Formato  
final_publication.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 499.03 kB
Formato Adobe PDF
499.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1166987
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact