The current base station centric cellular network architecture hinders the implementation of effective sleep techniques, often resulting in energy-inefficient mobile networks. The efforts towards 5G and network densification, however, open new possibilities and may, at last, allow the integration of sleep modes without any QoS degradation. In this paper, we consider heterogeneous networks in which data and control planes are split and independent, referred to as SDHN. We present an energy consumption metric that can be used to evaluate the radio access power consumption and the associated energy efficiency of these networks. Concerning other metrics in literature, the proposal accounts for both the coverage area as well as the traffic load, and it is relatively simple to use. The proposed metric is applied to evaluate the power consumption performance of an LTE SDHN in an urban indoor scenario. Results confirm that sleep modes in such architectures can effectively cut power consumption and improve energy efficiency while preserving QoS.
Energy Savings of Sleep Modes enabled by 5G Software-Defined Heterogeneous Networks / Klapez, M.; Grazia, C. A.; Casoni, M.. - (2018), pp. 485-490. (Intervento presentato al convegno 2018 IEEE 4th International Forum on Research and Technologies for Society and Industry (RTSI) tenutosi a Palermo (Italy) nel September 10-13 2018) [10.1109/RTSI.2018.8548508].
Energy Savings of Sleep Modes enabled by 5G Software-Defined Heterogeneous Networks
Klapez M.;Grazia C. A.;Casoni M.
2018
Abstract
The current base station centric cellular network architecture hinders the implementation of effective sleep techniques, often resulting in energy-inefficient mobile networks. The efforts towards 5G and network densification, however, open new possibilities and may, at last, allow the integration of sleep modes without any QoS degradation. In this paper, we consider heterogeneous networks in which data and control planes are split and independent, referred to as SDHN. We present an energy consumption metric that can be used to evaluate the radio access power consumption and the associated energy efficiency of these networks. Concerning other metrics in literature, the proposal accounts for both the coverage area as well as the traffic load, and it is relatively simple to use. The proposed metric is applied to evaluate the power consumption performance of an LTE SDHN in an urban indoor scenario. Results confirm that sleep modes in such architectures can effectively cut power consumption and improve energy efficiency while preserving QoS.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris