We derive a connection between the intrinsic tribological properties and the electronic properties of a solid interface. In particular, we show that the adhesion and frictional forces are dictated by the electronic charge redistribution occurring due to the relative displacements of the two surfaces in contact. We define a figure of merit to quantify such a charge redistribution and show that simple functional relations hold for a wide series of interactions including metallic, covalent, and physical bonds. This suggests unconventional ways of measuring friction by recording the evolution of the interfacial electronic charge during sliding. Finally, we explain that the key mechanism to reduce adhesive friction is to inhibit the charge flow at the interface and provide examples of this mechanism in common lubricant additives.
Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces / Wolloch, M.; Levita, G.; Restuccia, P.; Righi, M. C.. - In: PHYSICAL REVIEW LETTERS. - ISSN 0031-9007. - 121:2(2018), pp. N/A-N/A. [10.1103/PhysRevLett.121.026804]
Interfacial Charge Density and Its Connection to Adhesion and Frictional Forces
Wolloch, M.;Restuccia, P.;Righi, M. C.
2018
Abstract
We derive a connection between the intrinsic tribological properties and the electronic properties of a solid interface. In particular, we show that the adhesion and frictional forces are dictated by the electronic charge redistribution occurring due to the relative displacements of the two surfaces in contact. We define a figure of merit to quantify such a charge redistribution and show that simple functional relations hold for a wide series of interactions including metallic, covalent, and physical bonds. This suggests unconventional ways of measuring friction by recording the evolution of the interfacial electronic charge during sliding. Finally, we explain that the key mechanism to reduce adhesive friction is to inhibit the charge flow at the interface and provide examples of this mechanism in common lubricant additives.File | Dimensione | Formato | |
---|---|---|---|
18_PhysRevLett.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.49 MB
Formato
Adobe PDF
|
1.49 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris