A closed-form full-field solution is presented for stresses and displacement in a circular disk containing a diametrical adhesive thin layer induced by two opposite compressive loads acting along an arbitrary di- ametrical direction. For the sake of simplicity, the adhesive layer is treated as a tangential displacement discontinuity between the two disk halves. The problem is split into symmetric and skew-symmetric loading conditions. No contribution is expected from the adhesive layer for the symmetric problem. For the skew-symmetric loading condition, a general integral solution in bipolar coordinates has been as- sumed for the Airy stress function in the form of a Fourier sine transform. The imposition of the boundary conditions then allows us to reduce the problem to a Fredholm integral equation of the first kind defined on the half-line or equivalently to a singular integro-differential equation defined on a bounded interval. A preliminary asymptotic analysis of the stress and displacement fields at the edges of the adhesive thin layer shows that the stress field is finite therein, but the rotation displays a logarithmic singularity. A numerical solution of the singular integro-differential equation is then provided by assuming a power se- ries expansion for the shear stress, whose coefficients are determined by using a collocation method. An approximate closed-form solution is also derived by exploiting a perturbation method that assumes the ratio between the shear modulus of the disk material and the shear stiffness of the adhesive thin layer as small parameter. The shear stress distribution along the thin layer turns out to be more and more uni- form as the adhesive shear stiffness decreases. In order to validate the analytical results, FE investigations and also experimental results obtained by using Digital Image Correlation (DIC) techniques are presented for varying loading orientation and material parameters.

Adhesively bonded disk under compressive diametrical load / Radi, E.; Dragoni, E.; Spaggiari, A.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 152–153:(2018), pp. 51-65. [10.1016/j.ijsolstr.2018.05.021]

Adhesively bonded disk under compressive diametrical load

Radi, E.
;
Dragoni, E.;Spaggiari, A.
2018

Abstract

A closed-form full-field solution is presented for stresses and displacement in a circular disk containing a diametrical adhesive thin layer induced by two opposite compressive loads acting along an arbitrary di- ametrical direction. For the sake of simplicity, the adhesive layer is treated as a tangential displacement discontinuity between the two disk halves. The problem is split into symmetric and skew-symmetric loading conditions. No contribution is expected from the adhesive layer for the symmetric problem. For the skew-symmetric loading condition, a general integral solution in bipolar coordinates has been as- sumed for the Airy stress function in the form of a Fourier sine transform. The imposition of the boundary conditions then allows us to reduce the problem to a Fredholm integral equation of the first kind defined on the half-line or equivalently to a singular integro-differential equation defined on a bounded interval. A preliminary asymptotic analysis of the stress and displacement fields at the edges of the adhesive thin layer shows that the stress field is finite therein, but the rotation displays a logarithmic singularity. A numerical solution of the singular integro-differential equation is then provided by assuming a power se- ries expansion for the shear stress, whose coefficients are determined by using a collocation method. An approximate closed-form solution is also derived by exploiting a perturbation method that assumes the ratio between the shear modulus of the disk material and the shear stiffness of the adhesive thin layer as small parameter. The shear stress distribution along the thin layer turns out to be more and more uni- form as the adhesive shear stiffness decreases. In order to validate the analytical results, FE investigations and also experimental results obtained by using Digital Image Correlation (DIC) techniques are presented for varying loading orientation and material parameters.
2018
25-ago-2018
152–153
51
65
Adhesively bonded disk under compressive diametrical load / Radi, E.; Dragoni, E.; Spaggiari, A.. - In: INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES. - ISSN 0020-7683. - 152–153:(2018), pp. 51-65. [10.1016/j.ijsolstr.2018.05.021]
Radi, E.; Dragoni, E.; Spaggiari, A.
File in questo prodotto:
File Dimensione Formato  
IJSS 2018a.pdf

Accesso riservato

Descrizione: articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
IJSS 2018 bra pre.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.84 MB
Formato Adobe PDF
2.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1165113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact