We consider the generalized assignment problem (GAP) with min-max regret criterion under interval costs. This problem models many real-world applications in which jobs must be assigned to agents but the costs of assignment may vary after the decision has been taken. We computationally examine two heuristic methods: a fixed-scenario approach and a dual substitution algorithm. We also examine exact algorithmic approaches (Benders-like decomposition and branch-and-cut) and further introduce a more sophisticated algorithm that incorporates various methodologies, including Lagrangian relaxation and variable fixing. The resulting Lagrangian-based branch-and-cut algorithm performs satisfactorily on benchmark instances.
Exact and heuristic algorithms for the interval min-max regret generalized assignment problem / Wu, Wei; Iori, Manuel; Martello, Silvano; Yagiura, Mutsunori. - In: COMPUTERS & INDUSTRIAL ENGINEERING. - ISSN 0360-8352. - 125:(2018), pp. 98-110. [10.1016/j.cie.2018.08.007]
Exact and heuristic algorithms for the interval min-max regret generalized assignment problem
Iori, Manuel;MARTELLO, Silvano;YAGIURA, MUTSUNORI
2018
Abstract
We consider the generalized assignment problem (GAP) with min-max regret criterion under interval costs. This problem models many real-world applications in which jobs must be assigned to agents but the costs of assignment may vary after the decision has been taken. We computationally examine two heuristic methods: a fixed-scenario approach and a dual substitution algorithm. We also examine exact algorithmic approaches (Benders-like decomposition and branch-and-cut) and further introduce a more sophisticated algorithm that incorporates various methodologies, including Lagrangian relaxation and variable fixing. The resulting Lagrangian-based branch-and-cut algorithm performs satisfactorily on benchmark instances.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris