Multi-People Tracking in an open-world setting requires a special effort in precise detection. Moreover, temporal continuity in the detection phase gains more importance when scene cluttering introduces the challenging problems of occluded targets. For the purpose, we propose a deep network architecture that jointly extracts people body parts and associates them across short temporal spans. Our model explicitly deals with occluded body parts, by hallucinating plausible solutions of not visible joints. We propose a new end-to-end architecture composed by four branches (visible heatmaps, occluded heatmaps, part affinity fields and temporal affinity fields) fed by a time linker feature extractor. To overcome the lack of surveillance data with tracking, body part and occlusion annotations we created the vastest Computer Graphics dataset for people tracking in urban scenarios by exploiting a photorealistic videogame. It is up to now the vastest dataset (about 500.000 frames, almost 10 million body poses) of human body parts for people tracking in urban scenarios. Our architecture trained on virtual data exhibits good generalization capabilities also on public real tracking benchmarks, when image resolution and sharpness are high enough, producing reliable tracklets useful for further batch data association or re-id modules.
Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World / Fabbri, Matteo; Lanzi, Fabio; Calderara, Simone; Palazzi, Andrea; Vezzani, Roberto; Cucchiara, Rita. - 11208(2018), pp. 450-466. ((Intervento presentato al convegno European Conference on Computer Vision (ECCV) 2018 tenutosi a Munich (Germany) nel September, 8-14 2018 [10.1007/978-3-030-01225-0_27].
Data di pubblicazione: | 2018 | |
Titolo: | Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World | |
Autore/i: | Fabbri, Matteo; Lanzi, Fabio; Calderara, Simone; Palazzi, Andrea; Vezzani, Roberto; Cucchiara, Rita | |
Autore/i UNIMORE: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-030-01225-0_27 | |
Codice identificativo Scopus: | 2-s2.0-85055457975 | |
Codice identificativo ISI: | WOS:000594212900027 | |
Nome del convegno: | European Conference on Computer Vision (ECCV) 2018 | |
Luogo del convegno: | Munich (Germany) | |
Data del convegno: | September, 8-14 2018 | |
Serie: | LECTURE NOTES IN COMPUTER SCIENCE | |
Volume: | 11208 | |
Pagina iniziale: | 450 | |
Pagina finale: | 466 | |
Citazione: | Learning to Detect and Track Visible and Occluded Body Joints in a Virtual World / Fabbri, Matteo; Lanzi, Fabio; Calderara, Simone; Palazzi, Andrea; Vezzani, Roberto; Cucchiara, Rita. - 11208(2018), pp. 450-466. ((Intervento presentato al convegno European Conference on Computer Vision (ECCV) 2018 tenutosi a Munich (Germany) nel September, 8-14 2018 [10.1007/978-3-030-01225-0_27]. | |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
eccv2018camerareadykit.pdf | Articolo principale | Pre-print dell'autore (bozza pre referaggio) | Open Access Visualizza/Apri |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris