Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) contrast has become one of the most powerful tools in neuroscience research. On the other hand, fMRI approaches have seen limited use in the study of spinal cord and subcortical brain regions (such as the brainstem and portions of the diencephalon). Indeed obtaining good BOLD signal in these areas still represents a technical and scientific challenge, due to poor control of physiological noise and to a limited overall quality of the functional series. A solution can be found in the combination of optimized experimental procedures at acquisition stage, and well-adapted artifact mitigation procedures in the data processing. In this framework, we studied two different data processing strategies to reduce physiological noise in cortical and subcortical brain regions and in the spinal cord, based on the aCompCor and RETROICOR denoising tools respectively. The study, performed in healthy subjects, was carried out using an ad hoc isometric motor task. We observed an increased signal to noise ratio in the denoised functional time series in the spinal cord and in the subcortical brain region.

Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions / Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 13:2(2018), pp. 1-14. [10.1088/1748-0221/13/02/C02028]

Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions

Summers, P.;Favilla, S.;Porro, C. A.;Fratini, M.
2018

Abstract

Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) contrast has become one of the most powerful tools in neuroscience research. On the other hand, fMRI approaches have seen limited use in the study of spinal cord and subcortical brain regions (such as the brainstem and portions of the diencephalon). Indeed obtaining good BOLD signal in these areas still represents a technical and scientific challenge, due to poor control of physiological noise and to a limited overall quality of the functional series. A solution can be found in the combination of optimized experimental procedures at acquisition stage, and well-adapted artifact mitigation procedures in the data processing. In this framework, we studied two different data processing strategies to reduce physiological noise in cortical and subcortical brain regions and in the spinal cord, based on the aCompCor and RETROICOR denoising tools respectively. The study, performed in healthy subjects, was carried out using an ad hoc isometric motor task. We observed an increased signal to noise ratio in the denoised functional time series in the spinal cord and in the subcortical brain region.
2018
13
2
1
14
Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions / Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 13:2(2018), pp. 1-14. [10.1088/1748-0221/13/02/C02028]
Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.
File in questo prodotto:
File Dimensione Formato  
Maugeri_2018_J._Inst._13_C02028.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1163948
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact