Calcium ions play a critical role in neuronal cell death. Pigment epithelium-derived factor (PEDF) is a promising neuroprotective protein for photoreceptor cells but the mechanisms mediating its effects against retinal degeneration are still not well characterized. We addressed this question in the rd1 degenerating mouse retina that bears a mutation in the Pde6b gene encoding one subunit of the phosphodiesterase enzyme. Loss of phosphodiesterase activity in rod photoreceptor cells increases cyclic guanosine monophosphate (cGMP) levels leading to a rise in intracellular calcium. Short-term treatments with recombinant human PEDF protein decreased intracellular calcium in photoreceptors in vivo. Taking advantage of calcium pump blockers, we defined that PEDF signaling acts on PMCA calcium pumps to lower intracellular calcium. PEDF restrained cell death pathways activated by high calcium levels and engaging calpains, BAX and AIF. The neurotrophic effects were mediated by the PEDF receptor (PEDF-R), encoded by the PNPLA2 gene. Finally, peptides containing the neurotrophic domain of PEDF targeted these same cell death pathways in vivo. The findings reveal rescue from death of degenerating photoreceptor cells by a PEDF-mediated preservation of intracellular calcium homeostasis.
Pigment epithelium-derived factor hinders photoreceptor cell death by reducing intracellular calcium in the degenerating retina / Comitato, Antonella; Subramanian, Preeti; Turchiano, Giandomenico; Montanari, Monica; Becerra, S. Patricia; Marigo, Valeria. - In: CELL DEATH & DISEASE. - ISSN 2041-4889. - 9:5(2018), pp. 560-560. [10.1038/s41419-018-0613-y]
Pigment epithelium-derived factor hinders photoreceptor cell death by reducing intracellular calcium in the degenerating retina
Comitato, AntonellaData Curation
;Turchiano, GiandomenicoData Curation
;Montanari, MonicaData Curation
;Marigo, Valeria
Conceptualization
2018
Abstract
Calcium ions play a critical role in neuronal cell death. Pigment epithelium-derived factor (PEDF) is a promising neuroprotective protein for photoreceptor cells but the mechanisms mediating its effects against retinal degeneration are still not well characterized. We addressed this question in the rd1 degenerating mouse retina that bears a mutation in the Pde6b gene encoding one subunit of the phosphodiesterase enzyme. Loss of phosphodiesterase activity in rod photoreceptor cells increases cyclic guanosine monophosphate (cGMP) levels leading to a rise in intracellular calcium. Short-term treatments with recombinant human PEDF protein decreased intracellular calcium in photoreceptors in vivo. Taking advantage of calcium pump blockers, we defined that PEDF signaling acts on PMCA calcium pumps to lower intracellular calcium. PEDF restrained cell death pathways activated by high calcium levels and engaging calpains, BAX and AIF. The neurotrophic effects were mediated by the PEDF receptor (PEDF-R), encoded by the PNPLA2 gene. Finally, peptides containing the neurotrophic domain of PEDF targeted these same cell death pathways in vivo. The findings reveal rescue from death of degenerating photoreceptor cells by a PEDF-mediated preservation of intracellular calcium homeostasis.File | Dimensione | Formato | |
---|---|---|---|
Comitato-CDDis.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
24.77 MB
Formato
Adobe PDF
|
24.77 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris