In this paper we propose an alternating block version of a variable metric linesearch proximal gradient method. This algorithm addresses problems where the objective function is the sum of a smooth term, whose variables may be coupled, plus a separable part given by the sum of two or more convex, possibly nonsmooth functions, each depending on a single block of variables. Our approach is characterized by the possibility of performing several proximal gradient steps for updating every block of variables and by the Armijo backtracking linesearch for adaptively computing the steplength parameter. Under the assumption that the objective function satisfies the Kurdyka- Lojasiewicz property at each point of its domain and the gradient of the smooth part is locally Lipschitz continuous, we prove the convergence of the iterates sequence generated by the method. Numerical experience on an image blind deconvolution problem show the improvements obtained by adopting a variable number of inner block iterations combined with a variable metric in the computation of the proximal operator.
A block coordinate variable metric linesearch based proximal gradient method / Bonettini, Silvia; Prato, Marco; Rebegoldi, Simone. - In: COMPUTATIONAL OPTIMIZATION AND APPLICATIONS. - ISSN 1573-2894. - 71:1(2018), pp. 5-52. [10.1007/s10589-018-0011-5]
A block coordinate variable metric linesearch based proximal gradient method
Bonettini, Silvia
;Prato, Marco;Rebegoldi, Simone
2018
Abstract
In this paper we propose an alternating block version of a variable metric linesearch proximal gradient method. This algorithm addresses problems where the objective function is the sum of a smooth term, whose variables may be coupled, plus a separable part given by the sum of two or more convex, possibly nonsmooth functions, each depending on a single block of variables. Our approach is characterized by the possibility of performing several proximal gradient steps for updating every block of variables and by the Armijo backtracking linesearch for adaptively computing the steplength parameter. Under the assumption that the objective function satisfies the Kurdyka- Lojasiewicz property at each point of its domain and the gradient of the smooth part is locally Lipschitz continuous, we prove the convergence of the iterates sequence generated by the method. Numerical experience on an image blind deconvolution problem show the improvements obtained by adopting a variable number of inner block iterations combined with a variable metric in the computation of the proximal operator.File | Dimensione | Formato | |
---|---|---|---|
VOR_A block coordinate variable.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.7 MB
Formato
Adobe PDF
|
1.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris