We present some recent results on the possibility of extending the theory of varifolds to the realm of discrete surfaces of any dimension and codimension, for which robust notions of approximate curvatures, also allowing for singularities, can be defined. This framework has applications to discrete and computational geometry, as well as to geometric variational problems in discrete settings. We finally show some numerical tests on point clouds that support and confirm our theoretical findings.

Discretization and Approximation of Surfaces Using Varifolds / Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon. - In: GEOMETRIC FLOWS. - ISSN 2353-3382. - 3:1(2018), pp. 28-56. [10.1515/geofl-2018-0004]

Discretization and Approximation of Surfaces Using Varifolds

Leonardi, Gian Paolo
;
2018

Abstract

We present some recent results on the possibility of extending the theory of varifolds to the realm of discrete surfaces of any dimension and codimension, for which robust notions of approximate curvatures, also allowing for singularities, can be defined. This framework has applications to discrete and computational geometry, as well as to geometric variational problems in discrete settings. We finally show some numerical tests on point clouds that support and confirm our theoretical findings.
28-mar-2018
3
1
28
56
Discretization and Approximation of Surfaces Using Varifolds / Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon. - In: GEOMETRIC FLOWS. - ISSN 2353-3382. - 3:1(2018), pp. 28-56. [10.1515/geofl-2018-0004]
Buet, Blanche; Leonardi, Gian Paolo; Masnou, Simon
File in questo prodotto:
File Dimensione Formato  
geofl-2018-0004.pdf

accesso aperto

Descrizione: articolo principale
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1160813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact