Poly(3,4-ethylenedioxythiophene) (PEDOT) semiconductor plays a relevant role in the development of organic thermoelectric (TE) devices for low-power generation. While dopant counterions are usually needed to provide electrical conductivity, their overall effects on the thermoelectric response of the systems are unknown and uncontrolled. Here, we present a first principles study of the electronic and thermal transport of PEDOT crystalline assemblies, specifically analysing the role played by tosylate dopants on the thermoelectric figure of merit of the doped system. Our results demonstrate that, beside the desired charging effect, the presence of dopants impacts the bulk configuration by inflating the packing structure and worsening the intrinsic transport properties of the PEDOT host. This provides a rationale for the necessity of controlling the optimal amount and the structural incorporation of dopant in order to maximize the thermoelectric response of organic materials.
Conflicting effect of chemical doping on the thermoelectric response of ordered PEDOT aggregates / Cigarini, Luigi; Ruini, Alice; Catellani, Alessandra; Calzolari, Arrigo. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 20:7(2018), pp. 5021-5027. [10.1039/c7cp07898f]
Conflicting effect of chemical doping on the thermoelectric response of ordered PEDOT aggregates
Cigarini, Luigi;Ruini, Alice;Calzolari, Arrigo
2018
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT) semiconductor plays a relevant role in the development of organic thermoelectric (TE) devices for low-power generation. While dopant counterions are usually needed to provide electrical conductivity, their overall effects on the thermoelectric response of the systems are unknown and uncontrolled. Here, we present a first principles study of the electronic and thermal transport of PEDOT crystalline assemblies, specifically analysing the role played by tosylate dopants on the thermoelectric figure of merit of the doped system. Our results demonstrate that, beside the desired charging effect, the presence of dopants impacts the bulk configuration by inflating the packing structure and worsening the intrinsic transport properties of the PEDOT host. This provides a rationale for the necessity of controlling the optimal amount and the structural incorporation of dopant in order to maximize the thermoelectric response of organic materials.File | Dimensione | Formato | |
---|---|---|---|
ciga+18cppc.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.55 MB
Formato
Adobe PDF
|
2.55 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris