Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders. © 2014 The Authors.
MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis / Ghosh, Tanay; Aprea, Julieta; Nardelli, Jeannette; Engel, Hannes; Selinger, Christian; Mombereau, Cedric; Lemonnier, Thomas; Moutkine, Imane; Schwendimann, Leslie; Dori, Martina; Irinopoulou, Theano; Henrion-Caude, Alexandra; Benecke, Arndt G.; Arnold, Sebastian J.; Gressens, Pierre; Calegari, Federico; Groszer, Matthias. - In: CELL REPORTS. - ISSN 2211-1247. - 7:6(2014), pp. 1779-1788. [10.1016/j.celrep.2014.05.029]
MicroRNAs Establish Robustness and Adaptability of a Critical Gene Network to Regulate Progenitor Fate Decisions during Cortical Neurogenesis
Dori, Martina;
2014
Abstract
Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders. © 2014 The Authors.File | Dimensione | Formato | |
---|---|---|---|
2014-MicroRNAs_Establish_Robustness_and_Adaptability_of_a_Critical_Gene_Network_to_Regulate_Progenitor_Fate_Decisions_du.pdf
Open access
Descrizione: Articolo principale
Tipologia:
Versione pubblicata dall'editore
Dimensione
2.77 MB
Formato
Adobe PDF
|
2.77 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris