An intense laser field in the high-frequency regime drives carriers in graphene nanoribbons (GNRs) out of equilibrium and creates topologically protected edge states. Using Floquet theory on driven GNRs, we calculate the time evolution of local excitations of these edge states and show that they exhibit a robust dynamics also in the presence of very localized lattice defects (atomic vacancies), which is characteristic of topologically nontrivial behavior. We show how it is possible to control them by a modulated electrostatic potential: They can be fully transmitted on the same edge, reflected on the opposite one, or can be split between the two edges, in analogy with Hall edge states, making them promising candidates for flying-qubit architectures.

Dynamics and control of edge states in laser-driven graphene nanoribbons / Puviani, Matteo; Manghi, F.; Bertoni, A.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 95:23(2017), p. 235430. [10.1103/PhysRevB.95.235430]

Dynamics and control of edge states in laser-driven graphene nanoribbons

PUVIANI, MATTEO
Membro del Collaboration Group
;
Manghi, F.
Membro del Collaboration Group
;
Bertoni, A.
Membro del Collaboration Group
2017

Abstract

An intense laser field in the high-frequency regime drives carriers in graphene nanoribbons (GNRs) out of equilibrium and creates topologically protected edge states. Using Floquet theory on driven GNRs, we calculate the time evolution of local excitations of these edge states and show that they exhibit a robust dynamics also in the presence of very localized lattice defects (atomic vacancies), which is characteristic of topologically nontrivial behavior. We show how it is possible to control them by a modulated electrostatic potential: They can be fully transmitted on the same edge, reflected on the opposite one, or can be split between the two edges, in analogy with Hall edge states, making them promising candidates for flying-qubit architectures.
23-giu- 1
95
23
235430
Dynamics and control of edge states in laser-driven graphene nanoribbons / Puviani, Matteo; Manghi, F.; Bertoni, A.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 95:23(2017), p. 235430. [10.1103/PhysRevB.95.235430]
Puviani, Matteo; Manghi, F.; Bertoni, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1157658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact