In all organisms, chromatin is packed to fulfil structural constraints and functional requirements. The hierarchical model of chromatin organization in the 3D nuclear space encompasses different topologies at diverse scale lengths, with chromosomes occupying distinct volumes, further organized in compartments, inside which the chromatin fibers fold into large domains and short-range loops. In the recent years, the combination of chromosome conformation capture (3C) techniques and high-throughput sequencing allowed probing chromatin spatial organization at the whole genome-scale. 3C-based methods produce enormous amounts of genomic data that are analyzed using ad-hoc computational procedures. Here, we review the common pipelines and methods for the analysis of genome-wide chromosome conformation capture data, highlighting recent developments in key steps for the identification of chromatin structures.
Computational methods for analyzing genome-wide chromosome conformation capture data / Nicoletti, Chiara; Forcato, Mattia; Bicciato, Silvio. - In: CURRENT OPINION IN BIOTECHNOLOGY. - ISSN 0958-1669. - 54:(2018), pp. 98-105. [10.1016/j.copbio.2018.01.023]
Computational methods for analyzing genome-wide chromosome conformation capture data
Forcato, Mattia;Bicciato, Silvio
2018
Abstract
In all organisms, chromatin is packed to fulfil structural constraints and functional requirements. The hierarchical model of chromatin organization in the 3D nuclear space encompasses different topologies at diverse scale lengths, with chromosomes occupying distinct volumes, further organized in compartments, inside which the chromatin fibers fold into large domains and short-range loops. In the recent years, the combination of chromosome conformation capture (3C) techniques and high-throughput sequencing allowed probing chromatin spatial organization at the whole genome-scale. 3C-based methods produce enormous amounts of genomic data that are analyzed using ad-hoc computational procedures. Here, we review the common pipelines and methods for the analysis of genome-wide chromosome conformation capture data, highlighting recent developments in key steps for the identification of chromatin structures.File | Dimensione | Formato | |
---|---|---|---|
COBIOT_2017_241_Original_V1.pdf
Open Access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
3.89 MB
Formato
Adobe PDF
|
3.89 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris