We report ab initio results for sub-stoichiometric HfOx with different oxygen vacancy densities, useful in exploring microscopic mechanisms that govern the operation of RRAM devices. We demonstrate that oxygen vacancy filaments are energetically more stable than randomly distributed defects. Furthermore, the stability of the filaments increases with the number of confined oxygen vacancies. Energetic and structural analyses show that bonds between neighboring coordinative unsaturated Hf atoms promote filament stability, and electron trapping, due to electron injection, increases the cohesive energy until the injection is moderate. The highly oxygen deficient configuration of the filaments leads to a substantial lowering of the HfOx band gap, which locally increases the conductivity of the system. Charge injection and electric fields modify the mobility of oxygen ions in the proximity of the filament. The simulations suggest that oxygen ion diffusion can lead to an asymmetric reduction of filament thickness and thus to its progressive disruption where the vacancy cohesion energy is lower.

We report ab initio results for sub-stoichiometric HfOxwith different oxygen vacancy densities, useful in exploring microscopic mechanisms that govern the operation of RRAM devices. We demonstrate that oxygen vacancy filaments are energetically more stable than randomly distributed defects. Furthermore, the stability of the filaments increases with the number of confined oxygen vacancies. Energetic and structural analyses show that bonds between neighboring coordinative unsaturated Hf atoms promote filament stability, and electron trapping, due to electron injection, increases the cohesive energy until the injection is moderate. The highly oxygen deficient configuration of the filaments leads to a substantial lowering of the HfOx band gap, which locally increases the conductivity of the system. Charge injection and electric fields modify the mobility of oxygen ions in the proximity of the filament. The simulations suggest that oxygen ion diffusion can lead to an asymmetric reduction of filament thickness and thus to its progressive disruption where the vacancy cohesion energy is lower.

Ab initio modelling of oxygen vacancy arrangement in highly defective HfO2 resistive layers / Sementa, Luca; Larcher, Luca; Barcaro, Giovanni; Montorsi, Monia. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 19:18(2017), pp. 11318-11325. [10.1039/C7CP01216K]

Ab initio modelling of oxygen vacancy arrangement in highly defective HfO2 resistive layers

SEMENTA, LUCA;Larcher, Luca;Montorsi, Monia
2017

Abstract

We report ab initio results for sub-stoichiometric HfOxwith different oxygen vacancy densities, useful in exploring microscopic mechanisms that govern the operation of RRAM devices. We demonstrate that oxygen vacancy filaments are energetically more stable than randomly distributed defects. Furthermore, the stability of the filaments increases with the number of confined oxygen vacancies. Energetic and structural analyses show that bonds between neighboring coordinative unsaturated Hf atoms promote filament stability, and electron trapping, due to electron injection, increases the cohesive energy until the injection is moderate. The highly oxygen deficient configuration of the filaments leads to a substantial lowering of the HfOx band gap, which locally increases the conductivity of the system. Charge injection and electric fields modify the mobility of oxygen ions in the proximity of the filament. The simulations suggest that oxygen ion diffusion can lead to an asymmetric reduction of filament thickness and thus to its progressive disruption where the vacancy cohesion energy is lower.
2017
19
18
11318
11325
Ab initio modelling of oxygen vacancy arrangement in highly defective HfO2 resistive layers / Sementa, Luca; Larcher, Luca; Barcaro, Giovanni; Montorsi, Monia. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - 19:18(2017), pp. 11318-11325. [10.1039/C7CP01216K]
Sementa, Luca; Larcher, Luca; Barcaro, Giovanni; Montorsi, Monia
File in questo prodotto:
File Dimensione Formato  
PCCP-final.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1155846
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact