The use of parameters in the descrip- tion of natural language syntax has to balance between the need to discrim- inate among (sometimes subtly dier- ent) languages, which can be seen as a cross-linguistic version of Chomsky's (1964) descriptive adequacy, and the complexity of the acquisition task that a large number of parameters would imply, which is a problem for explana- tory adequacy. Here we present a novel approach in which a machine learning algorithm is used to nd dependencies in a table of parameters. The result is a dependency graph in which some of the parameters can be fully predicted from others. These empirical ndings can be then subjected to linguistic analy- sis, which may either refute them by providing typological counter-examples of languages not included in the origi- nal dataset, dismiss them on theoret- ical grounds, or uphold them as ten- tative empirical laws worth of further study.
Machine Learning Models of Universal Grammar Parameter Dependencies / Kazakov, D.; Cordoni, G.; Ceolin, A.; Irimia, M. -A.; Kim, S. S.; Michelioudakis, D.; Radkevich, N.; Guardiano, C.; Longobardi, G.. - (2017), pp. 31-37. ((Intervento presentato al convegno Knowledge Resources for the Socio-Economic Sciences and Humanities associated with RANLP-17 tenutosi a Varna nel September 7, 2017.
Data di pubblicazione: | 2017 |
Titolo: | Machine Learning Models of Universal Grammar Parameter Dependencies |
Autore/i: | Kazakov, D.; Cordoni, G.; Ceolin, A.; Irimia, M. -A.; Kim, S. S.; Michelioudakis, D.; Radkevich, N.; Guardiano, C.; Longobardi, G. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.26615/978-954-452-040-3_005 |
Codice identificativo Scopus: | 2-s2.0-85025805268 |
Nome del convegno: | Knowledge Resources for the Socio-Economic Sciences and Humanities associated with RANLP-17 |
Luogo del convegno: | Varna |
Data del convegno: | September 7, 2017 |
Pagina iniziale: | 31 |
Pagina finale: | 37 |
Citazione: | Machine Learning Models of Universal Grammar Parameter Dependencies / Kazakov, D.; Cordoni, G.; Ceolin, A.; Irimia, M. -A.; Kim, S. S.; Michelioudakis, D.; Radkevich, N.; Guardiano, C.; Longobardi, G.. - (2017), pp. 31-37. ((Intervento presentato al convegno Knowledge Resources for the Socio-Economic Sciences and Humanities associated with RANLP-17 tenutosi a Varna nel September 7, 2017. |
Tipologia | Relazione in Atti di Convegno |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
(2017)learningdependencies-CRC-final.pdf | Articolo principale | Versione dell'editore (versione pubblicata) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris