Early developments in the developments of low-calcium (including calcium-free) alkali-activated binders were led by the work of Davidovits in France, as noted in Chap. 2. These materials were initially envisaged as a fire-resistant replacement for organic polymeric materials, with identification of potential applications as a possible binder for concrete production following relatively soon afterwards [1]. However, developments in the area of concrete production soon led back to more calcium-rich systems, including the hybrid Pyrament binders, leaving work based on the use of low-calcium systems predominantly aimed at high-temperature applications and other scenarios where the ceramic-like nature of clay-derived alkali-activated pastes was beneficial. Early work in this area was conducted with an almost solely commercial focus, meaning that little scientific information was made available with the exception of a conference proceedings volume [2], several scattered publications in other conferences, and an initial journal publication [3]. Academic research into the alkaline activation of metakaolin to form a binder material led to initial publications in the early 1990s [4, 5], and the first description of the formation of a strong and durable binder by alkaline activation of fly ash was published by Wastiels et al. [6-8]. With ongoing developments in fly ash activation, which offers more favourable rheology than is observed in clay-based binders, interest in low-calcium AAM concrete production was reignited, and work since that time in industry and academia has led to the development of a number of different approaches to this problem. A review of the binder chemistry of low-calcium AAM binder systems published in 2007 [9] has since received more than 350 citations in the scientific literature, indicating the high current level of interest in understanding and utilisation of these types of gels.
Binder chemistry – Low-calcium alkali-activated materials / Provis, John L.; Fernández Jiménez, Ana; Kamseu, Elie; Leonelli, Cristina; Palomo, Angel. - ELETTRONICO. - 13:(2014), pp. 93-123. [10.1007/978-94-007-7672-2_4]
Binder chemistry – Low-calcium alkali-activated materials
KAMSEU, Elie
Writing – Original Draft Preparation
;LEONELLI, CristinaInvestigation
;
2014
Abstract
Early developments in the developments of low-calcium (including calcium-free) alkali-activated binders were led by the work of Davidovits in France, as noted in Chap. 2. These materials were initially envisaged as a fire-resistant replacement for organic polymeric materials, with identification of potential applications as a possible binder for concrete production following relatively soon afterwards [1]. However, developments in the area of concrete production soon led back to more calcium-rich systems, including the hybrid Pyrament binders, leaving work based on the use of low-calcium systems predominantly aimed at high-temperature applications and other scenarios where the ceramic-like nature of clay-derived alkali-activated pastes was beneficial. Early work in this area was conducted with an almost solely commercial focus, meaning that little scientific information was made available with the exception of a conference proceedings volume [2], several scattered publications in other conferences, and an initial journal publication [3]. Academic research into the alkaline activation of metakaolin to form a binder material led to initial publications in the early 1990s [4, 5], and the first description of the formation of a strong and durable binder by alkaline activation of fly ash was published by Wastiels et al. [6-8]. With ongoing developments in fly ash activation, which offers more favourable rheology than is observed in clay-based binders, interest in low-calcium AAM concrete production was reignited, and work since that time in industry and academia has led to the development of a number of different approaches to this problem. A review of the binder chemistry of low-calcium AAM binder systems published in 2007 [9] has since received more than 350 citations in the scientific literature, indicating the high current level of interest in understanding and utilisation of these types of gels.File | Dimensione | Formato | |
---|---|---|---|
RILEM_ Binder Chemistry – Low-Calcium Alkali-Activated Materials –.pdf
Open access
Descrizione: copertina volume con indice
Tipologia:
Altro
Dimensione
176.16 kB
Formato
Adobe PDF
|
176.16 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris